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The extracellular matrix (ECM) is extensively remodeled during inflammation providing

essential guidance cues for immune cell migration and signals for cell activation and

survival. There is increasing interest in the therapeutic targeting of ECM to mitigate

chronic inflammatory diseases and enhance access to the tumor microenvironment.

T cells utilize the ECM as a scaffold for interstitial migration, dependent on T cell

expression of matrix-binding integrins αVβ1/αVβ3 and tissue display of the respective

RGD-containing ligands. The specific ECM components that control T cell migration

are unclear. Fibronectin (FN), a canonical RGD-containing matrix component, is heavily

upregulated in inflamed tissues and in vitro can serve as a substrate for leukocyte

migration. However, limited by lack of tools to intravitally visualize and manipulate

FN, the specific role of FN in effector T cell migration in vivo is unknown. Here, we

utilize fluorescently-tagged FN to probe for FN deposition, and intravital multiphoton

microscopy to visualize T cell migration relative to FN in the inflamed ear dermis. Th1

cells were found to migrate along FN fibers, with T cells appearing to actively push or pull

against flexible FN fibers. To determine the importance of T cell interactions with FN, we

used a specific inhibitor of FN polymerization, pUR4. Intradermal delivery of pUR4 (but not

the control peptide) to the inflamed skin resulted in a local reduction in FN deposition. We

also saw a striking attenuation of Th1 effector T cell movement at the pUR4 injection site,

suggesting FN plays a key role in T cell interstitial migration. In mechanistic studies, pUR4

incubation with FN in vitro resulted in enhanced tethering of T cells to FN matrix, limiting

productive migration. In vivo, such tethering led to increased Th1 accumulation in the

inflamed dermis. Enhanced Th1 accumulation exacerbated inflammation with increased

Th1 activation and IFNγ cytokine production. Thus, our studies highlight the importance

of ECM FN fibrils for T cell migration in inflamed tissues and suggest that manipulating

local levels of ECM FN may prove beneficial in promoting T cell accumulation in tissues

and enhancing local immunity to infection or cancer.
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FIGURE 4 | pUR4-treated FN halts Th1 migration in vitro. (A) Schematic of in vitro Th1 migration under confinement. (B) Pre-treatment of Th1 cells with pUR4 or

III-11C before loading under agar on FN coated coverslip, average speed per cell. (C,D) Pre-treatment of FN with pUR4 or III-11C before coating coverslip. (C)

Average speed of Th1 cells under-agar on the different FN treated surfaces. (D) Displacement of Th1 cells on the different FN treated surfaces. Statistics by Mann

Whitney, ****p < 0.0001. (E) Sample time-lapse sequences for Th1 cells (yellow) on III-11C pre-treated FN (left, center) and pUR4 pre-treated FN (right), color-coded

time scale in mins. Two to four independent experiments, 300–400 cells per group per experiment (see Videos 4, 5).

imaging (Figure 5E). 3D surface reconstruction of vessels using
Imaris software (Figure 5E, lower panels), enabled calculation of
the distance between each Th1 cell and the nearest blood vessel
(Figure 5F). Th1 cells that accumulated in the pUR4-treated
dermis were not observed within the blood vessels but were seen
extra-vascularly in close proximity to blood vessels: coincident
(0µm) or less than one cell diameter (1–10µm) from the vessel
surface (Figure 5F). A significantly higher proportion of Th1
cells were located coincident with the blood vessels in the pUR4-
treated dermis than in the control-treated dermis (Figure 5F).
These data indicate that Th1 cell extravasation from the blood is
not impaired by intradermal administration of pUR4, but ∼40–
50% of the Th1 cells that enter the tissue fail to migrate away
from the vessels. Fibronectin is known to alter the assembly of
collagen fibers and to modulate vascular endothelium, therefore
we analyzed possible indirect effects of pUR4 treatment on the
local milieu by assessing changes to the density of the collagen

network and CD31+ vasculature. We found no alteration in
SHG (as a surrogate for fibrillar collagen) or vessel density at the
sites of Th1 accumulation (Figure S5). Thus, accumulation
of Th1 cells in the dermis following pUR4 treatment,
together with in vitro evidence for pUR4-mediated tethering
(Figure 4), suggests that these cells get “stuck” peri-vascularly
following pUR4-treatment.

FN Manipulation Exacerbates Th1 Function
in the Inflamed Dermis
To determine the functional impact of perivascular Th1
cell accumulation following pUR4 treatment, we assessed the
effects of pUR4 treatment on T cell activation. FN has been
implicated in the co-stimulation of T cells (48) and therefore
pUR4 may have direct modulatory effects on T cell activation
independent of effects on FN. To test this, naïve DO11.10
TCR Tg+ T cells were activated in vitro with OVA-peptide
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FIGURE 5 | Perivascular Th1 cell accumulation in the pUR4-treated inflamed dermis. Adoptively transferred Kaede+ Th1 cells were imaged by IV-MPM in the pUR4 or

III-11C-treated dermis day 3-post OVA/CFA immunization. (A) Representative images of Th1 cells accumulation proximal and distal to the pUR4 or III-11C injection

site. Th1 cells (green), SHG (blue), scale bar 100µm. (B) Quantitation of the number of Th1 cells in the imaging field, statistics by ANOVA. (C,D) Enumeration of

Thy1.1+ transferred Th1 cells by Flow cytometry. Frequency of Th1 cells within the CD4+ population (C) and number (D) of Thy1.1+ cells in the pUR4 or

III-11C-treated dermis day 3-post OVA/CFA immunization, statistics by unpaired t-test. (E) Representative images of Th1 cell position relative to CD31+ blood vessels,

proximal to the pUR4 or III-11C injection site. AF647-labeled CD31 Ab administered i.v. immediately prior to imaging. Top, raw images; Th1 cells (green), SHG (blue),

scale bar 100µm. Bottom, 3D surfaces of vessels (gray) generated in Imaris and cells color coded based on distance to the nearest vessel. (F) Quantitation of the

frequency of Th1 cells relative to the distance to the nearest blood vessel in the pUR4 or III-11C-treated dermis day 3-post OVA/CFA immunization. Statistics by

two-way ANOVA, *p < 0.05, with Sidak’s multiple comparisons **p < 0.01. Two to three independent experiments.

and APC under Th1 polarizing conditions in the presence
of pUR4 or control III-11C. After 5 days, the T cells were
re-stimulated and effector function determined by measuring
the canonical Th1 cytokine, IFNγ. The frequency of IFNγ-
producing cells was assessed by intracellular cytokine staining
and flow cytometry, and by the secretion of IFNγ by ELISA
(Figure 6A). Treatment of T cell activation cultures with pUR4
had no effect on the generation or function of Th1 cells
(Figure 6A). Therefore, pUR4 does not appear to directly alter
T cell activation.

T cell activation was next determined in vivo, measured
by assessing the duration of T:APC interactions and the
in situ secretion of IFNγ by ex-vivo cytokine staining (43).

Fluorescently-labeled OVA-specific Th1 cells were transferred to
pUR4-treated and OVA/CFA immunized mice (as in Figure 1)
and T:APC interactions were measured in real time with IV-
MPM by acute labeling of CD11c+ APC with anti-CD11c-
PE Ab i.d. injected 2 h prior to imaging. The duration of
Th1 cell interactions with CD11c+ cells was measured using
an unbiased automated 3D surface rendering tool in Imaris
(49) (Figure S6). Th1 cells had significantly longer interaction
times with APCs in the pUR4-treated inflamed dermis than
the control group (Videos 6, 7), with many Th1s remaining in
contact with APCs for the 50–60min imaging period (Figure 6B)
(Video 6). To determine if prolonged APC contact enhanced
effector function, we measured ex-vivo expression of IFNγ
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FIGURE 6 | Enhanced Th1 function in the pUR4 treated inflamed dermis. (A) Naïve OVA-specific T cells stimulated in vitro with OVA-peptide, APC and pUR4 or

III-11C polypeptides, under Th1-polarizing conditions. T cells were re-stimulated day 5 of culture with plate-bound anti-TCRβ Ab (H57) and the frequency of

IFNγ-producers determined by intracellular cytokine staining and flow cytometry (left panel) and the amount of IFNγ secreted determined by ELISA (right panel). (B)

Adoptively transferred Th1 cells were imaged by IV-MPM in the pUR4 or III-11C-treated dermis day 3-post OVA/CFA immunization. Duration of Th1 contacts with

CD11c+ APCs was analyzed using Imaris surface tool to create 3D surfaces of T cells and APC. 3D volumetric overlap between the two cell surfaces was identified as

a contact and measured over time to quantify the duration of T:APC cell contacts. Each symbol is an individual T:APC contact. Statistics by Mann Whitney, *p < 0.05.

(C,D) OVA-specific Th1 cells were adoptively transferred to recipient mice that were treated with pUR4 or III-11C and immunized in one ear with cognate antigen,

OVA/CFA, and in the contralateral ear with non-cognate antigen, KLH/CFA. Flow cytometric analysis of ex vivo IFNγ producing cells within the transferred Th1 cells.

(C) Frequency and (D) number of IFNγ producing cells by the transferred Th1 cells in the presence (OVA) and absence (KLH) of cognate antigen in the pUR4 or III-11C

treated inflamed ear. Statistics were performed using one-way ANOVA with Tukey’s multiple comparisons test. **p < 0.01, *p < 0.05. Two to three independent

experiments, 4–5 mice per group per experiment.

by intracellular cytokine staining and flow cytometry. OVA-
specific Th1 cells were transferred to mice immunized with
OVA/CFA (cognate antigen) in one ear and KLH/CFA (non-
cognate antigen) in the contralateral ear. On day 3 post-
immunization, cells were harvested from the inflamed ears
in Brefeldin-A-containing buffers to directly assess ex-vivo
cytokine production (43). The frequency and number of IFNγ+

cells were significantly increased in the pUR4-treated ears in
an antigen-specific manner (Figures 6C,D). pUR4-treatment
did not result in non-specific T cell activation as there was
no increase in the number of IFNγ producers in pUR4-
treated ears immunized with the non-cognate antigen, KLH
(KLH/CFA). Thus, pUR4-treatment of the inflamed dermis

confined the movement of Th1 cells leading to longer T:APC
contacts and enhanced cytokine production, unexpectedly
exacerbating inflammation.

DISCUSSION

The movement of T cells within infected tissues is critical for
effective pathogen clearance and tissue repair, yet the T cell
guidance cues used to navigate inflamed tissues are poorly
understood. Our previous work using IV-MPM had revealed
that Th1 cells utilize the ECM as a scaffold for integrin-
dependent migration (9). We now show that FN is a critical
player in facilitating such T cell interstitial migration. The use
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of fluorescently-tagged FN as a real-time probe for FN in
situ enabled the first in vivo visualization of T cell migration
along FN fibers, revealing an active interplay between migrating
T cells and the flexible FN scaffold. Utilizing a polypeptide
derived from a bacterial adhesion that blocks FN deposition
(29), pUR4, we were able to locally manipulate FN matrix
assembly. Disrupting FN deposition in the inflamed dermis led
to a marked inhibition of T cell migration. We identify two
mechanisms of pUR4 action: inhibiting T cell migration via
limiting substrate availability and/or inhibiting migration due to
enhancing substrate adhesion thus tethering cells in place. The
functional consequence of pUR4-treatment was to unexpectedly
exacerbate T cell accumulation at the inflamed site and enhance
the inflammatory cytokine IFNγ production.

Real time imaging of T cells and the ECM has relied on the
multiphoton microscopy-generated SHG signal as a surrogate
for a fibrillar scaffold but does not reflect the actual substrate
along which the T cells migrate. Using fluorescent FN molecules
incorporated into nascent FN fibrils we were able to visualize the
interface between migrating T cells and their ECM substrate. FN
associated with fibers coincident with SHG (type III collagen by
IHC), and also formed distinct fibers not associated with SHG.
Using this intra-vital approach, the flexibility of the FN fibers
within the inflamed dermis was clearly visible, with fibers being
temporarily deformed as the Th1 cells migrated (Video 1). Such
flexibility is intriguing given the growing interest in mechano-
sensing mechanisms in immunity (50, 51) and in how substrate
stiffness can influence ECM assembly and function of interacting
cells (52, 53). FN and collagen assembly is a cooperative process
(54), with in vitro studies showing that collagen preferentially
colocalizes with more relaxed FN (55). In turn, excess FN matrix
deposition (56) or tension placed on FN fibers (57), and now
pUR4-alteration in FN deposition as we reveal here, attenuates
the rate of cell migration; with enhanced stress decreasing cell
migration possibly through a conformation change in FN that
enhances integrin-binding (57). A recent study using tunable
biomaterials revealed that migrating cells utilize the flexibility
of the matrix to enhance migration (58). Cell contractility led
to matrix stretch and recoil resulting in a rapid migration mode
that they termed “sling shot migration” (58). The ability to now
assess, in vivo, the flexibility of FN fibers relative to migrating
immune cells will facilitate analysis of the relationship between
substrate flexibility, migratory preference and speed as cells
navigate inflamed sites.

Mimetics of bacterial adhesins that bind FN and prevent its
assembly into fibrils represent an exciting approach to attenuate
fibrotic disease. Systemic delivery of pUR4/FUD has been
shown to significantly reduce FN deposition, decrease innate
immune infiltration and attenuate cardiac and liver fibrosis
in mouse models (23–25). These models of chronic disease
are often associated with the recruitment and activation of
macrophages and it will be interesting to determine if there
is a difference in the effect of FN blockade between different
immune cell types. Delivery of pUR4 peri-adventitially in a
model of vascular remodeling resulted in a marked decrease
in leukocyte infiltration into the vessel wall that correlated
with decreased vessel expression of ICAM-1 and VCAM-1 (23),

adhesion molecules critical for immune cell extravasation (2).
Our approach to administer pUR4 intradermally would bypass
any action of FN blockade on vascular control of immune cell
extravasation. However, the previously observed pUR4-induced
changes in adhesion molecules on blood vessels (23), raises
the possibility that a similar alteration in adhesion molecules
might occur on tissue lymphatics (59), if pUR4 is administered
intradermally. Therefore, it will be interesting to determine if
T cell accumulation following pUR4 treatment could be in part
explained by reduced exit from the tissue via lymphatics.

Our studies suggest that pUR4 may act to enhance cellular
adhesion, possibly through changing the conformation of FN.
In vitro studies have shown that binding of pUR4/FUD to
soluble FN leads to conformational changes that “expand” the
protein to expose the FNIII module that contains the RGD
sequence for integrin binding (31, 32). Structural studies with
a related S. aureus FN-binding protein demonstrated that the
conformational rearrangement of soluble FN enhanced FN/α5β1
integrin affinity as measured by surface plasmon resonance (33).
Our own in vitro studies support this notion, with T cells
appearing tethered to the pUR4-treated FN surface (Video 5). In
vivo, the T cells also appeared “stuck” perivascularly, with cells
spreading as if strongly adhered. We had predicted that in the
absence of being able to effectively scan the tissue to encounter
APCs for activation, T cells would have reduced effector function,
but instead perivascular accumulation enhanced T function,
perhaps linked to the co-localized perivascular clustering of
APCs implicated in boosting T cell activation (60). ECM
fragments have been implicated in directly activating T cells
(61–63). However, we found no direct evidence of pUR4 acting
directly on the T cells themselves. Rather, it appears that the
lack of ability of T cells to move away from antigen-bearing
APC in the pUR4-treated microenvironment may prolong
activation times and exacerbate cytokine production. Therefore,
we show here that too much integrin-based adhesion limits
T cell locomotion and have shown previously that limiting
integrin-based adhesion, by acute blockade of T cell αV-integrin
association with the matrix (9), also results in an attenuation
of T cell locomotion. These experimental results fit well with
a proposed model of migration efficiency that tunes T cell
migration by balancing the degree of adhesion, too much or
too little adhesion leading to cellular arrest (47). Interestingly,
we find that limiting adhesion in different ways leads to
distinctly different functional outcomes: the tethering effect
of pUR4 enhances T:APC interactions and IFNγ production
while blocking interstitial migration with acute anti-αV Ab
treatment decreased IFNγ production presumably by limiting
the ability of the Th1 cells to “find” APC (9). Future therapeutic
strategies that target adhesion may therefore have distinct (and
opposite) functional outcomes depending on the spatiotemporal
administration of the therapeutic.

Our findings on the use of pUR4-treatment for targeted
inhibition of FN deposition highlight an important context-
dependent effect on T cell mediated immunity. Instead of
dampening inflammation, pUR4 delivered locally within a tissue
enhanced T cell accumulation. Our results raise the interesting
possibility that FN targeting through pUR4 treatment may be
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useful in enhancing T cell accumulation and activation at sites of
chronic infection or in regions of the tumor that would otherwise
be inaccessible.
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Video 1 | Th1 cells migrating along fibronectin fibers in the CFA-inflamed dermis.

OVA-specific Th1 cells labeled with CMTMR (blue) migrating along AF-488

conjugated FN (green) fibers in the OVA/CFA-inflamed dermis on d3 of

inflammation. Cells were imaged using IV-MPM for 30min. Th1 cells appear to be

pushing and pulling along flexible fibronectin fibers.

Videos 2,3 | Decreased Th1 cell interstitial motility proximal to the pUR4 injection

site. Adoptively transferred OVA-specific Th1 cells (green) and Second Harmonic

Generation (SHG) (blue) in the pUR4 (Video 2) or III-11c (Video 3) treated

OVA/CFA-inflamed dermis were captured for 30min. Side-by-side video proximal

and distal from the injection site using IV-MPM imaging. Scale Bar: 100µm.

Enhanced accumulation and decreased Th1 cell motility local to the pUR4

injection site in the CFA-inflamed dermis.

Video 4 | pUR4T cell pre-treatment does not have a direct effect of CD4 Th1 cell

migration in vitro. Th1 cells (yellow) were pretreated with 500 nM III-11c (left) or

pUR4 (right) and imaged under agar on fibronectin-coated glass coverslips using

confocal microscopy. Twenty minutes movies of Th1 cell migration. Scale Bar:

100 µm.

Video 5 | Fibronectin pretreated with pUR4 alters CD4 Th1 cell migration in vitro.

Fibronectin was pretreated with 500 nM III-11c (left) or pUR4 (right) and then

coated on glass coverslips. Twenty minutes movies of Th1 cells (yellow) migrating

under agar on glass coverslips coated with pre-treated fibronectin were captured

using confocal microscopy. Scale Bar: 100 µm.

Video 6 | Prolonged T:APC interactions at the pUR4-treated site. Fluorescently

labeled Th1 cells were transferred into OVA/CFA immunized mice with dermal

pUR4 treatment (as described in Figure 2) and imaged 3 days later. Mice were

injected intradermally with anti-CD11c-PE antibody and Fc-block 2 h prior to

imaging. The video shows a representative prolonged T cell (green) encounter with

CD11c+ cells (red). Th1 and CD11c surfaces were rendered using the Imaris

(Bitplane) surface tool, and dynamic cell surface overlap (white) used to determine

unbiased T:APC contact time (see Figure 6, Figure S6).

Video 7 | Duration of T:APC interactions at the III-11c-treated site. Fluorescently

labeled Th1 cells (green) were transferred into OVA/CFA immunized mice with

dermal III-11c treatment (as described in Figure 2) and imaged 3 days later. Mice

were injected intradermally with anti-CD11c-PE antibody and Fc-block 2 h prior to

imaging. The video shows representative multiple T cell (green) encounters with

CD11c+ cells (red). Th1 and CD11c surfaces were rendered using the Imaris

(Bitplane) surface tool, and dynamic cell surface overlap (white) used to determine

unbiased T:APC contact time (see Figure 6, Figure S6).

Figure S1 | Association with fibronectin fibers in SHG and T cells in the

CFA-inflamed dermis. (A,B) WT mice were immunized with OVA/CFA in the ear

pinna. On d3 of inflammation. Hundred microgram FN-AF488 was i.v. injected 4 h

prior to IV-MPM imaging. (A) An example of a single Z-plane from a MP image

stack showing the local orientation overlays of the fibronectin (yellow) and collagen

(SHG) (red) signals. (B) Histograms of the orientation angles of the fibronectin and

collagen (SHG) and random distributions for the images in (A). (C,D) OVA-specific

Th1 cells labeled with CMTMR (red) were adoptively transferred to WT mice and

immunized with OVA/CFA in the ear pinna. On d3 of inflammation, 100 µg

FN-AF488 was i.v. injected 4 h prior to IV-MPM imaging. SHG (gray), AF-488 FN

(green) and Th1 cells (red) of a 2D slice (C) in a 3D stack (D) in the

OVA/CFA-inflamed dermis, scale bar 50 and 100µm respectively. Large red

structures surrounded by areas devoid of SHG are hair follicles with auto

fluorescent hair fibers.

Figure S2 | FN deposition on glass coverslips. Two hundred nanometer FN was

pre-incubated with 500 nM pUR4 or III-11C or left untreated (No Tx) for 30min at

RT before coating the coverslip for 60min at RT. The coverslip was stained with

rabbit polyclonal anti-FN Ab followed by Alexa Fluor 488 (AF-488)-conjugated

donkey anti-rabbit Ab and visualized using confocal microscopy. Mean fibronectin

pixel intensity was quantified using FIJI software.

Figure S3 | Maximum projection images of T cell migratory paths on III-11C or

pUR4 pre-treated FN. Twenty minutes movies of Th1 cells migrating under agar on

glass coverslips coated with pUR4 or III-11C pre-treated FN were captured using

confocal microscopy. Binary images were produced using a triangle thresholding

algorithm in Python. Tracks were generated using TrackPy in Python. Cell tracks

from each frame in the time lapse were added together and displayed on a single

image.

Figure S4 | Gating strategy for detection of transferred Th1 cells. 7.5 × 106

OVA-specific Thy 1.1+ Th1 cells were adoptively transferred into WT Thy 1.2+

mice and treated with pUR4 or III-11C and immunized as described in Figure 2.

Cells were harvested from the ear tissue, labeled with live/dead stain, anti-CD45,

anti-CD4 and anti-Thy1.1 Abs and analyzed using flow cytometry. Gating
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sequence: Live, FSC; singlets; CD45+; CD4+; Thy1.1, CD4. The adoptively

transferred cells (donor) were distinguished from endogenous CD4T cells (host) by

expression of Thy1.1.

Figure S5 | pUR4 treatment does not alter the local collagen (SHG) or vessel

density. Mice were injected intradermally with pUR4 or control III-11C and

immunized with OVA/CFA as described in Figure 2. On d3 of inflammation, the

density of SHG and CD31+ vessels was calculated in areas proximal or distal to

the injections site. (A) Representative multiphoton images of the SHG signal

proximal to the injection site. (B) Density of SHG measured by calculating the

percentage of the planar area filled by SHG signal. (C) SHG density in individual

imaging fields relative to the injection site. (D) Density of CD31+ vessels proximal

to the injection site measured by calculating the percentage of the planar area

filled by CD31 fluorescence (see images in Figure 5). (A–D) All data not

statistically significant. Representative data from 2 to 3 independent experiments,

2–3 mice per experiment, 2–3 imaging fields per mouse.

Figure S6 | Real time T:APC contact analysis by IV-MPM. OVA-specific Th1 cells

(green) were adoptively transferred into WT mice treated with pUR4 or III-11C and

immunized as described in Figure 2. CD11c+ APCs (red) were detected by

intradermal injection of a mixture of 1µg CD11c-PE and Fc Block (CD16/32) Abs

2 h prior to IV-MPM imaging. For T:APC contact analysis, 3D masked surfaces for

CD11c+ and T cells were generated in Imaris and the 3D volumetric overlap

between the two cell surfaces identified as a contact (white) and the duration of

individual contacts determined over time. (A,B) time lapse sequences of two

examples of individual T:APC contacts in the inflamed dermis.
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