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cells from experimental images of a single
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generalizable models of cellular forces

can be used to advance understanding

and control of cell adhesion.
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SUMMARY
Cellular form and function emerge from complexmechanochemical systemswithin the cytoplasm. Currently,
no systematic strategy exists to infer large-scale physical properties of a cell from its molecular components.
This is an obstacle to understanding processes such as cell adhesion and migration. Here, we develop a
data-driven modeling pipeline to learn the mechanical behavior of adherent cells. We first train neural net-
works to predict cellular forces from images of cytoskeletal proteins. Strikingly, experimental images of a sin-
gle focal adhesion (FA) protein, such as zyxin, are sufficient to predict forces and can generalize to unseen
biological regimes. Using this observation, we develop two approaches—one constrained by physics and
the other agnostic—to construct data-driven continuum models of cellular forces. Both reveal how cellular
forces are encoded by two distinct length scales. Beyond adherent cell mechanics, our work serves as a
case study for integrating neural networks into predictive models for cell biology.
INTRODUCTION

The structure and dynamics of living cells are controlled by the

physical properties of the cytoskeleton.1,2 The cytoskeleton it-

self, however, is the product of complex biochemical circuits

that regulate its dynamics and spatial organization.3,4 The central

challenge faced when studying the physical biology of the cell is

to untangle this interplay between physics and biochemistry.

Current modeling approaches lean heavily on intuition built

upon centuries of work on classical continuum mechanics,

where symmetries and conservation laws dictate both the vari-

ables that arise in such models, as well as the equations they

obey.5,6 Cells, however, are decidedly non-classical, relying

instead on distributed enzymatic activity and non-equilibrium

mechanochemical processes across a hierarchy of scales.7,8

For example, forces in cells arise not only to restore local defor-

mations, but also as a result of continuous remodeling regulated

by biochemical signaling networks. This intertwined action of

physics and biochemistry complicates coarse-graining and sys-

tem parameterization of cell dynamics in terms of a few simply

understood collective variables.9,10

Machine learning (ML) has the potential to overcome this chal-

lenge by augmenting existing physical models with biochemical

information and even discovering new ones directly from the sta-

tistics of data.11–14 These tools have proven very successful in
structural biology for predicting protein structures directly from

gene sequences.15,16 Here, we illustrate the power of ML ap-

proaches in a classic cellular biology problem: how cytoskeletal

proteins govern the mechanics of cells. Cells generate contrac-

tile forces, which are critical regulators of cell shape, adhesion,

motility, and mechanotransduction.17,18 Forces generated in

the actin cytoskeleton are transmitted via transmembrane focal

adhesions (FAs) to the extracellular matrix19–21 where they can

be measured directly with techniques like traction force micro-

scopy (TFM).22–24 TFM measurements coupled with live-cell im-

aging of fluorescently tagged cytoskeletal proteins have helped

develop a number of biophysical models of cellular force gener-

ation and mechanosensing.25–32 While providing insight into

various local microscopic mechanisms, these models do not

capture the broad heterogeneity of structures and behaviors in

cells. As a result, they cannot fully account for how non-local

and cell-scale properties such as cell morphology and FA struc-

ture and location affect, and even dominate, local forces.

In this work, we demonstrate how to harness the flexibility of

neural networks to both improve existing models of cellular

forces as well as discover new ones. We begin by training

deep neural networks to predict forces directly from images of

fluorescent cytoskeletal proteins, and in the process, we

discover that a single FA protein, such as zyxin or paxillin, is suf-

ficient to predict traction stresses. The ability to make accurate
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predictions with only a single protein distribution does not imply

that other proteins are biochemically redundant for force gener-

ation. Rather, it suggests the minimum amount of information,

and hence minimal complexity of models, needed to predict

the magnitude and orientation of cellular forces. These predic-

tions are robust, as we find that the networks can generalize to

previously unseen experimental and biological perturbations.

To understand this generalizability, we probe the neural network

to identify features that inform its predictions and further guide

the formulation of two complementary mathematical models.

First, we introduce a physics-constrained ML approach that

augments existing mechanical cellular models31–34: it learns

directly from data how a single, measured protein distribution

sets the physically meaningful parameters of an effective

linear-elastic model. Second, we cast away our mechanical hy-

potheses and demonstrate a purely data-driven pipeline that

constructs relevant fields and distills effective equations, which

predict cellular traction stresses. Despite incorporating varying

degrees of model complexity and prior knowledge, all our ap-

proaches consistently reveal that models for force generation

are characterized by the interaction of both local and non-local

features. Our findings illustrate how FA proteins encode informa-

tion of local forces at adhesion sites, as well as whole-cell

contractility through their distribution in the cell, and demon-

strate a suite of complementary approaches to build novel

models of living systems.

RESULTS

Neural networks accurately predict traction forces from
images of a single protein
To assess whether neural networks could make mechanical pre-

dictions from biochemical fields, we created a library by pairing

fluorescence microscopy images of the FA protein zyxin in fibro-

blasts35 (Figure 1A) with their corresponding traction forces as

directly measured by TFM (F
!

exp; Figures 1B and 1C). In total,

our library contained images obtained from 31 separate time lap-

ses of cells expressing zyxin and their associated traction force

fields (see STARMethods for details). In each of these cells, trac-

tion forces primarily localized along the cell boundary at FAs, as

marked by zyxin accumulation, and pointed inward toward the

cell body (Figures 1C and 1D). For our neural network, we chose

a U-Net architectural backbone that learns large-scale features

via successive strided convolutions, while skip connections be-

tween layers propagate fine-grained information and preserve

local structure that may be lost during coarse-graining36 (Fig-

ure 1A). While U-Nets have proven successful at solving the

TFM inverse problem,37,38 here, we push them to link biochem-

istry and mechanics. We augment this backbone with ConvNext

blocks to improve accuracy and training efficiency39 (Figure S1;

see STARMethods and supplemental information for architecture

details). We trained the U-Net to directly predict traction forces,

using the library of paired zyxin images as inputs (F
!

NN;

Figures 1C and 1D). The library was split into training and test

sets containing 16 and 15 cells, respectively (Figure 1G). Although

the U-Net was taught using only the training set, it learned to

generalize and was able to accurately predict traction forces in

cells from the test set, which it had never seen before
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(Figures 1C and 1D). The network predictions of traction forces

agreed generally with experimental measurements in both loca-

tion and magnitude (Figure 1C), with some smoothing occurring

at the micron scale (Figure 1D).

To evaluate the U-Net accuracy, we compared the experimen-

tally measured traction force directions (aexp) and magnitudes

(
��Fexp

��) with those predicted by the U-Net for all the cells in the

test set (aNN, jFNNj). Figures 1E and 1F show the conditional dis-

tributions pðaexp

��aNNÞ and pðjFexpj
��jFNNjÞ (see STARMethods for

additional details) along with the averages (solid line) and stan-

dard deviation (dotted line). The neural network achieves near-

optimal accuracy for force angles as well as magnitudes up

to�4 kPa, which represents�99.9% of pixels in the test dataset

(Figures 1E, 1F, and S3). To evaluate the neural network’s sensi-

tivity to the test and traindata used,wegenerated22 randompar-

titions of our 31-cell library into 16-cell training sets and 15-cell

test sets.We trained a separateU-Net on each partition and eval-

uated the mean-squared error (MSE) of the force predictions

(Figures 1H, and S3). The network performance varies weakly,

depending on the cells present in the test and train set, with the

MSE fluctuating by less than ± 5% across test cells. As a com-

parison, the MSE varies by ± 2% between cells measured on

different days (Figure S3), denoted by Di in Figure 1H. The net-

work’s sensitivity to training and testing data is thus similar in

magnitude to systematic variations, which arise from differences

in experimental preparation, rather than from fundamental differ-

ences between cells. Together, these results demonstrate that

from a readily achievable amount of experimental data, a U-Net

can robustly learn tomake accurate predictions of traction forces

from fluorescent images of a single FA protein, such as zyxin.

Zyxin-trained networks outperform other cytoskeletal
proteins
In addition to identifying FAs, zyxin also reveals information

about actin stress fiber organization and general cell geometry.40

To determine which of these features was driving the U-Net per-

formance, we tested the efficacy of other cytoskeletal proteins

involved in force transmission: actin and myosin, the filaments

and motors that make up the contractile network; paxillin,

another FA protein; mitochondria, an organelle unconnected to

the contractile machinery as a negative control; and binary

masks of the cell morphology. For these experiments, we simul-

taneously expressed zyxin with the other proteins of interest.

Except for mitochondria-trained networks, all networks learned

to predict forces with some degree of accuracy, capturing

the general localization and magnitude of traction stresses

(Figure 2A). The probability distribution of angular error

Da = aNN � aexp peaked around zero for all proteins, differing

only in the width of the distribution about the true value (Fig-

ure 2B). This distribution width was similar for networks trained

on each protein, except for mitochondria that showed a high

angular variance (Figure 2C). When comparing force magnitude

predictions, we observed larger differences among the proteins,

with the FA proteins zyxin and paxillin outperforming all others

(Figures 2D and S4). Surprisingly, training networks on combined

inputs of zyxin and these proteins did not improve performance,

and they performed as well as a U-Net trained on zyxin alone

(Figures 2E and S4). Similarly, combining paxillin and actin also
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Figure 1. Neural networks accurately predict forces from images of a single protein

(A) Fluorescent protein intensities (e.g., EGFP-zyxin) are measured in cells spread on 2D polyacrylamide gels coated with fibronectin.

(B) Adherent cells generate forces via the contractile activity of the cytoskeleton. These traction forces are transmitted to the substrate through focal adhesions

(FAs). By measuring the displacement of fluorescent beads embedded in the substrate (red circles), the traction forces can be reconstructed using traction force

microscopy (TFM; see STAR Methods).

(C) (Top) Forces (F
!

exp) recovered from experimental measurements of substrate deformations via TFM. (Bottom) U-Nets predict traction forces (F
!

NN) from

images of protein intensity. In both plots, the magnitude of the traction force is indicated by the color and the direction by the overlaid arrow.

(D) Zoomed-in view of colored boxes in (C).

(E and F) At each pixel, we measure ðaexp;aNN;
��Fexp

��; jFNNjÞ, which we bin to calculate the conditional angular distribution pðaexp

��aNNÞ (E) and the conditional

magnitude distribution p
���Fexp

�������FNN

��� (F). An optimal predictor lies exactly along the diagonal. Solid lines denote the average of the distribution, while dashed

lines mark one standard deviation. The angular distribution is strongly peaked along this diagonal (with additional peaks appearing due to periodicity), while the

magnitude distribution remains on the diagonal up to
��Fexp

��z4 kPa, which corresponds to 99.9%of pixels. Inset of (E) shows the probability distribution of angular

error Da = aNN � aexp.

(G) Partition of 31-cell dataset into 16-cell training set and 15-cell test set. Every cell shown in this paper is in the test set and was not seen during training.

(H) Model mean-squared error (MSE) for 22 random train/test partitions. Dashed lines denote days on which cells were imaged. Pixel color pij is the averageMSE

of all models that use cell i for training and cell j for testing.
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did not perform as well as zyxin alone (Figure 2E). Although the

cellular forces themselves are generated by many interacting

proteins, a single FA protein is sufficient to serve as a proxy for

this microscopic complexity and contains enough information

to determine the coarse-grained mechanical behavior. These re-

sults demonstrate that neural networks can be used to sort

through potentially relevant proteins and identify a minimal sub-

set that contains all the necessary information about the cell to

predict forces.We proceeded using our highest-performing neu-

ral network, which was trained using zyxin alone.
Zyxin-trained networks generalize to new cell types and
biological perturbations
While it is generally assumed that the underlying mechanics of

contraction are universal,18 we sought to explicitly test this by

evaluating our U-Net (which was trained on images of fibro-

blasts) on images of other adherent cell types. Specifically, we

imaged zyxin in individual human osteosarcoma epithelial cells

(U2OS; Figure 3A) and paxillin in colonies of canine epithelial

cells (MDCK; Figures 3D and S5). Without any retraining, the

zyxin-trained U-Net generally predicted accurate traction force
Cell 187, 1–14, January 18, 2024 3
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Figure 2. Zyxin-trained networks outperform other cytoskeletal proteins
(A) The predictive power of different cellular proteins inputs are compared by training neural networks on each protein individually. The comparison includes

cytoskeletal proteins associated with force generation (actin, myosin), FA proteins (paxillin, zyxin), as well as a protein thought to be unrelated to force generation

(mitochondria) and the binary cell mask. Scale bars are 20 mm.

(B) While all networks trained in (A) predict accurate force directions on average, the distribution of errors varies depending on protein.

(C) We quantify the angular error by the full-width half-maximum (FWHM) value of the distributions in (B). The networks performed similarly, except for the

mitochondria network that showed a much larger FWHM. Error bars denote standard deviations of the error across different cells.

(D) NNs trained on focal adhesion proteins, in particular zyxin, predict force magnitudes more accurately than those trained on other inputs. Inset shows

calculation of magnitude error, which measures the cumulative distance from the diagonal up to F� = 6 (black dashed line).

(E) Zyxin outperforms all other proteins in predicting forcemagnitudes, and training on zyxin plus other proteins does not improve performance. Error bars denote

standard deviations as in (C). One cell in the actin dataset was an outlier and was excluded (see STAR Methods and Figure S4 for details).
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directions and magnitudes for both new cell types (Figures 3B,

3C, 3E, and 3F), which were comparable to differences between

training on different cytoskeletal proteins (Figure S6). This was

true despite the MDCK data being taken on a softer substrate

(2.8 vs. 16 kPa shear modulus) using a different microscope.

While these changes in experimental setup can induce small er-

rors (see Figures S7, S8, and S9), the ability of the network to

generalize to different cell types, adhesion proteins, and cell

clusters suggests that it has learned some underlying general

law governing traction force generation.

To probe this idea further, we next challenged our U-Net

model to make predictions in response to a biochemical

perturbation. We imaged cells for 30 min at a basal contractile
4 Cell 187, 1–14, January 18, 2024
state before adding 5 mM of the Rho-kinase (ROCK) inhibitor

Y-27632 for 45 min and then washing out the drug and imaging

for a final 45min (Figures 3G and 3H). Adding Y-27632 resulted in

a drop in traction forces, an increase in overall cell area, and a

reduction in the size of FAs, as expected,41,42 while the wash-

out reversed each of these trends. Despite having never seen

these drug perturbations, the network still predicted the overall

changes in global traction forces (Figure 3G) and the local

changes at FAs (Figure 3H) during both the drug treatment and

the subsequent recovery followingwash-out. Together, these re-

sults indicate that the distribution of zyxin alone is a faithful proxy

for the mechanical state of a cell and is sufficient to predict trac-

tion forces under a wide variety of conditions.
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Figure 3. Zyxin-trained networks generalize to new cell types and biological perturbations

(A–G) The fibroblast-trained network of Figure 1 is evaluated on (A–C) individual U2OS cells expressing zyxin, and (D–F) colonies of MDCK cells expressing

paxillin. Pixel-wise distributions of angle and magnitude predictions for U2OS cells (B and C) and MDCK cells (E and F), as in Figure 1. (G) The same network,

which was trained only on fibroblasts in their basal contractile state, is evaluated on fibroblasts perturbed with the ROCK inhibitor Y-27632. The wash-in at t = 30

min impairs cytoskeletal contractility resulting in lower total force, which recovers after the drug is washed out at t = 75 min.

(H) Three snapshots from the time series in (G) demonstrate the NN’s ability to capture redistribution of forces seen during the perturbation.
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Neural networks identify features of cell adhesion and
morphology
Motivated by the success of the U-Net at predicting traction

forces,wenext sought to identify featuresof the zyxin distributions

that are relevant formaking those predictions. Zyxin encodes both

micron-scale structures, such as FAs (� 1 mm), as well as cell-

scale structures like stress fibers � 10–100 mm (Figure 1A). To

probe how the network interprets these features, we trained

U-Nets on random image crops of sizes ranging from 10 up to

130 mm in our input data (Figure 4A). Even when trained on only

a small fraction of the cell, these networks learned models that

were accurate on average for both force magnitude (Figures 4B

and 4C) and direction (Figures 4D and 4E). In both of these mea-

surements, improvements in the prediction accuracy was negli-

gible as the input size increased beyond �25 mm (Figures 4C

and 4E). This indicates that the U-Net does not need to know the

whole-cell geometry and that it can make accurate predictions

by considering a smaller neighborhood around any given point.
Previousworkhassuggested thatbothcellmorphology30–32,43–45

and FA distribution46–49 can impact force generation. To

understand how the U-Nets interpreted these features, we

generated synthetic ‘‘cells’’ to systematically vary these features

and examine the trained models’ response.50 To probe the role of

cell morphology, we evaluated the mask-trained U-Net on cells

that were triangular in shape with a width L and whose

edges were arcs with radius of curvature Rc (Figure 4F). While

the network did not systematically respond to increases in cell

edge curvature (Figure 4H), we did find that force production

increased with total cell size (Figure 4I). This result is consistent

with previous work showing that force generation scales with cell

area,32 and it further demonstrates that the network is sensitive to

large-scale features of cell geometry.

To probe the role of FA-like features, we created synthetic cells

composed of elliptical ‘‘FAs’’ of varying area and aspect ratio that

were distributed randomly throughout a circular cell (Figures 4J

and S10, and S11). The aspect ratio was defined with respect
Cell 187, 1–14, January 18, 2024 5
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Figure 4. Neural networks identify features of cell adhesion and morphology

(A) Networks are trainedwith varying crop sizes, ranging from 64 pixels (z10 mm) to 768 pixels (z130 mm). All networks are trained on the same data and have the

same architecture as the U-Net of Figures 1 and 3.

(B) Average force magnitude (defined in Figure 1) for varying crop sizes.

(C) Magnitude error as a function of crop size, using the same metric defined in Figure 2D.

(D) Distribution of angular errors Da = aNN � aexp for each crop size. Larger crops cause the distribution to peak sharply about Da = 0.

(E) FWHM of the distributions in (D) as a function of crop size. FWHM reduces dramatically at a crop size of z25 mm, beyond which it plateaus.

(F) Synthetic cells of size L consist of three points connected by circular arcs with radius Rc.

(G) Dependence of average force predicted by mask-trained U-Net on radius of curvature relative to the size of the synthetic cell, and cell size.

(H) Averaging along the x axis of (G) shows that average predicted force is independent of relative radius of curvature.

(I) Averaging along the y axis of (G) shows that average predicted force increases as a function of cell size. Shaded region in both (H) and (I) denotes one standard

deviation.

(J) (Top) Synthetic cells composed of ellipses of varying aspect ratio (defined relative to radial direction) and area, which are randomly distributed in a circular

boundary. A section of one such cell is shown along with the force magnitudes predicted by the zyxin-trained U-Net. (Bottom) Average predicted force mag-

nitudes vary with aspect ratio and area.

(K) Additional synthetic cells are generated of evenly spaced, radially oriented focal adhesions with varying length and intensity. (Top) A section of one such cell is

shown along with the force magnitudes predicted by the zyxin-trained U-Net. (Bottom) Average predicted force varies with zyxin intensity.
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to the radial direction, allowing us to simultaneously probe the

response of the network to both orientation and size of the FA-

like structures. We found that the zyxin-trained U-Net predicted

the highest forces for ellipses of area �2 mm2 and aspect ratio

of� 0:1 (i.e., those pointed radially), consistentwith experimental

descriptions of FAs.45,51–53 We further investigated the role of FA

intensity by creating circular cells with uniformly distributed ellip-

ses of fixed intensity and length along the edge (Figure 4K). Upon

increasing the intensity of the ellipses, we found a non-linear

response where the magnitude of the predicted traction forces

rose sharply at first and continued to grow at a slower rate at

higher intensities, consistent with previous reports of zyxin inten-

sity increasing with applied force.28 This retrospective analysis

revealed how the neural network transforms many different spe-
6 Cell 187, 1–14, January 18, 2024
cific features of the zyxin signal into cellular force predictions.

Instead of memorizing complex, uninterpretable correlations in

the training data, the U-Net identified biological features that

allow it to accurately generalize predictions of force generation

across cell types and biomechanical states.

Physical bottleneck neural networks: Learning adhesion
enhances an effective elastic model
While the U-Net-learned rules for predicting forces from zyxin

generalize far beyond the domain on which it was trained, it is

not transparent how the network uses features of the input

data to make predictions. In comparison, previous models

inspired by classical continuum theory rely on simple hypothe-

ses allowing for maximum interpretability. However, they
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magnitude of the Y field decreases in response to the ROCK inhibition but remains localized to FAs. (I) The ‘‘susceptibility’’ of the PBNN, kðxi ; xjÞ = vYðxi Þ
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quantile of the zyxin distribution (inset). Y correlates strongly only with the highest values of zyxin.
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typically lack the ability tomake predictions under wide ranges of

cell shapes and distributions of localized FAs.25–34 Here, we

demonstrate how to incorporate zyxin into continuum mechani-

cal models using neural networks, thereby learning relationships

between proteins and physical parameters that enhance the

generalizability of physical models.

We resort to an existing model that views the cell as an effec-

tive two-dimensional (2D) active elastic gel adhered to a sub-

strate.31–33 The main attraction of this minimal model is its

simplicity: it represents the complex processes governing cell

adhesion and contractility in terms of only two parameters, a uni-

form adhesion strength Y and a global active stress sa (Fig-

ure 5A). The forces are calculated as F
!ðxÞ = Y u!ðxÞ, where

u!ðxÞ is the displacement field found by minimizing the system’s

free energy (see supplemental information for details). Here, we

extend this model by considering a spatially varying adhesion

field YðxÞ to account for the inhomogeneous distribution of FA

sites in the cell.34 Inspired by the success of the U-Net, we con-

nect both physical parameters to chemical quantities by making
them zyxin-dependent, Y ½z�ðxÞ and sa½z�, with zðxÞ denoting the

experimentally determined zyxin distribution, so that forces are

now given by F
!ðxÞ = Y ½z�ðxÞ u!ðxÞ.

While classical methods exist to estimate model parameters

from experimental force data, they do not account for the addi-

tional constraint that the parameters are functions of zyxin. To

overcome this limitation, we introduce a ‘‘physical bottleneck’’

neural network (PBNN) architecture. The U-Net of Figures 1, 2,

3, and 4 calculates forces by processing hundreds of features

calculated in the latent layers of the network. In contrast, our

physical bottleneck computes only two features from which

forces are calculated in a deterministic and well-understood

way. Concretely, the PBNN calculates Y ½z�ðxÞ and sa½z� with a

neural network and feeds them as parameters into a PDE solver

to calculate traction forces (Figures 5C and S2). We train the

PBNN to predict parameters that minimize the MSE between

predicted forces and the experimentally measured forces. In

each iterative training step, the adjoint method54 is used to

calculate updates to the physical model parameters, which are
Cell 187, 1–14, January 18, 2024 7
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then passed to the neural network using backpropagation. This

two-step process ensures that updates to the neural network

obey the stringent constraints of the physical model.

The PBNN accurately predicts forces and generalizes to cells

perturbed by the ROCK inhibitor Y-27632 (Figures 5C and 5D).

The predicted force angles (Figure 5E) and magnitudes (Fig-

ure 5F), however, are less accurate on average across the da-

taset than those predicted by the unconstrained zyxin-trained

U-Net of Figures 1, 2, 3, and 4. This behavior is expected

due to the additional constraints imposed on the PBNN. The

PBNN nevertheless makes predictions on par with the mask-

trained U-Net (Figures 5E and 5F), which indicates that the

two parameters learned at the physical bottleneck contain at

least as much relevant information for force prediction than

anything an unconstrained deep U-Net could infer from the

cell morphology alone. Moreover, the U-Net processes its

latent features with a nearly arbitrarily complex function, while

the PBNN processes the Y field and sa into forces via a simple

differential equation.

The introduction of a zyxin-dependent adhesion field Y ½z�ðxÞ
was sufficient to make the physical model competitive with fully

deep U-Nets. The notation Y ½z�ðxÞ is used to indicate that Y is a

functional of the zyxin field z, which varies in space. We occa-

sionally omit the dependence on z for brevity. We found that

the learned field is strongly heterogeneous and localizes to FA

sites (Figures 5G and 5H). Furthermore, the intensity of YðxÞ de-
creases in response to the ROCK inhibitor Y-27632 and mirrors

the reorganization and reduction in number of FAs (Figures 5D

and 5H). However, it is not immediately clear how the PBNN

calculated YðxÞ from the spatial distribution of zyxin zðxÞ. To
characterize how the adhesion at a point xi depends on zyxin

at a point xj, we defined the susceptibility, or linear response,

of the network as kxi ;xj = vYðxiÞ
vzðxjÞ. The susceptibility curve exhibits

a rapid decay with a minimum atz5 mm (Figure 5I). Its shape re-

sembles a Laplace filter commonly used in peak-finding algo-

rithms, indicating that YðxÞ is associated with maxima in the

zyxin signal. We further probed the dependence of Y on zyxin

by correlating the average adhesion in each image Y with the

sum of zyxin values above a given threshold (Figures 5H and

S12). Upon increasing the threshold, Y becomes significantly

more correlated with zyxin, suggesting that the magnitude of

the adhesion field is set primarily by the highest zyxin values.

Together, these results indicate that the adhesion field is encod-

ing high-value peaks of zyxin intensity, which correspond to FAs.

The parameters learned by the PBNN are subject to the as-

sumptions of the model used to constrain them. The elastic

model makes predictions about displacements within the

cell, which are not directly accessible experimentally using

TFM, nor is it clear what undeformed reference frame these

displacements should be measured from. This is owing to

the fact that a cell, unlike a passive lattice of masses and

springs, continuously undergoes cytoskeletal remodeling,

even if no external deformations are applied. Nevertheless,

the PBNN is still a powerful tool to test our hypothesized

model, and it informs us of the minimal necessary ingredients

required to predict traction stresses. We showed that cell

shape (encoded as boundary conditions), a global contractile
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‘‘set-point’’ sa, and a field YðxÞ encoding FAs were sufficient

to make predictions. Furthermore, we find that a linear partial

differential equation describing an intermediate displacement

field is an adequate mathematical model to describe the

observed behavior.

Green’s function neural networks: Physics-agnostic
model-building reveals length scales and effective
equations
The success of the PBNN relies on generating plausible hypoth-

esized models, hence the insights it produces are biased by the

specific model prescribed. We now investigate whether we can

relax these constraints to gain insights even in the absence of

strong mechanical hypotheses. To do this, we turn to a phys-

ics-inspired approach to identify machine-learned rules that

are agnostic to specific underlying physical models. This method

again trades the complexity of our deep U-Net for fewer, more

interpretable operations (Figure 6A). Specifically, we assume

that the force can be written as a function of machine-learned

fields derived from zyxin (yellow and pink boxes in Figure 6A(i)).

While these fields are analogous to the PBNN’s displacement

u!ðxÞ and adhesion YðxÞ fields, we do not demand that these

quantities obey linear elasticity or any other particular continuum

theory. We only require that their non-local machine-learned re-

lationships with zyxin density are represented by Green’s func-

tions. The Green’s function method is a general tool to calculate

a system’s response to localized perturbations. For example, the

Green’s function of classical electrostatics is the 1=r potential

that determines the effect of a charge located at a distance

r away. With the aid of our machine-learned Green’s functions,

we will similarly seek to determine how the local traction force

depends on zyxin density throughout the cell (Figure 6A(ii)). In

contrast to the physical bottleneck, this is a question for which

we do not have the luxury of a readily available formula.

Using the same input zyxin images (Figure 6B), we train a

Green’s function neural network (GFNN) to characterize spatial

interactions between our input zyxin images and their respective

traction maps. The GFNN learns a series of sources and fields

(drawn in yellow and pink in Figures 6C–6E) from the zyxin im-

ages that it uses to predict the traction stresses (see STAR

Methods and supplemental information). While in principle a

GFNN can learn any number of fields, we found that a minimally

complex model could achieve accurate predictions using only

two (Figure 6F). Specifically, the GFNN learned two fields, x;c,

in terms of which predictions of the traction forces can be

made as F
!

= xðxÞV!cðxÞ. Such a representation is reminiscent

of Coulomb electrostatics, with x and c analogous to the charge

and electric potential, respectively (seeMethods S1 Figure 4 and

discussion for a demonstration of the GFNN method on 2D

Coulomb electrostatics data). Going back to our mechanical

model, note that this machine-learned formula resembles in

form the physics-informed model F
!

= Y u!: The ‘‘charge’’ x

identifies local peaks in zyxin intensity that are similar to FAs

(Figures 6C and 6E, top). The Green’s function for x, Gx, decays

over a very short length scale�5 mm (Figure 6D), suggesting that

it is determined by local information at the adhesion site

(Figures 6A(ii) and 6D). The ‘‘potential’’ c is less localized and

its Green’s function, Gc, accumulates zyxin information from a
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Figure 6. Green’s function neural networks: Physics-agnostic model-building reveals length scales and effective equations

(A) Green’s-function neural networks (GFNNs) first extract the fields and long-range interactions needed to predict forces. Next, sparse regression builds effective

equations fitting the machine-learned model.

(B) The GFNN predicts traction forces from the zyxin intensity field (top), which we compare with the forces measured in experiment (bottom).

(C–E) The GFNN learns sources rx; rc (C) from local zyxin information. These sources are integrated with machine-learned Green’s functions (D) to produce the

fields x;c (E). The Green’s functions Gx;Gc decay over different length scales representing regions over which protein information accumulates (D, top). Gx

decays over roughly a focal adhesion size, while Gc decays more slowly across the cell.

(F) The predicted force field from the GFNN agrees well with the ground truth (B, bottom).

(G) Using sparse regression, we learn a formula (see supplemental information) based on the GFNN, which predicts the force field.

(H) Time course of predicted forces during a ROCK inhibitor experiment. We compare the experimental forces (gray) with those predicted by GFNN (blue) and the

effective equation (red). The dashed lines indicate the drug wash-in and wash-out times.

(I) Sparse regression yields equations of varying complexity. We plot the improvement in mean-squared error of sparse-regressed models as a function of their

complexity, compared with a baseline model F = 0 with no learnable parameters. Star denotes the average performance of a 10-term equation.
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larger area of the cell (Figures 6A(ii) and 6C–6E, bottom). This

longer decay length suggests that the ‘‘potential’’ can infer as-

pects of the cell morphology from the zyxin distribution. Thus,

our GFNN model predicts traction forces from interactions be-

tween a FA ‘‘charge’’ and a cellular ‘‘potential.’’

To simplify this model further, we used sparse regression to

build effective equations that approximate the traction forces

(Figure 6A(iii)). A qualitatively accurate analytical formula (Fig-

ure 6G) can be obtained using only a handful of terms inspired

by the GFNN (see supplemental information for full equation).

This formula is dramatically compressed, compared with the

full U-Net, which contains 105 timesmore parameters. Neverthe-

less, it can capture 77% of the U-Net predictions and also gen-

eralizes to the biochemical perturbations induced by our ROCK

inhibition experiments (Figures 6H and 6I). This illustrates how

the U-Net, a complex black box, can be distilled into a similarly

accurate formula consisting of two non-local interactions and

parameterized by only a handful of terms (Figure 6I). Our pro-

posed pipeline demonstrates how to extract effective equations
that map protein distributions to traction forces without knowing

the explicit underlying relations. Although no physical input was

used to derive them, the structure F
!

= xV
!
c and the learned

equation (see supplemental information) are strikingly similar to

the PBNN model F
!

= Y u!. In particular, x and Y are both fields

that accumulate zyxin information within FAs, while V
!
c and u!

are vector fields that propagate information throughout the cell.

DISCUSSION

Here, we established that deep neural networks can predict the

contractile mechanics of cells directly from images of protein

distributions. Our results demonstrate that images of a single

FA protein, such as zyxin, contain sufficient information to accu-

rately predict traction forces. We showed that a network trained

on images of one cell type collected from one microscope can

generalize across a range of cell types, experimental setups,

and biomechanical regimes. These results illustrate the utility

of machine learning for extracting robust predictions from
Cell 187, 1–14, January 18, 2024 9
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Figure 7. Data-driven biophysical modeling

We present a suite of machine learning ap-

proaches to identify and interpret links be-

tween biological information contained in

images of protein distributions and traction

force measurements in adherent cells.

Deep neural networks require no prior knowl-

edge but can identify relevant components for

achieving robust generalizable predictions.

Here, they found that a single adhesion protein

is sufficient to predict traction forces. Physics-

inspired models use structural constraints to

learn governing rules but remain agnostic to

any specific theory. Physics-constrained

learning enhances existing models by linking

biochemical information to physical parame-

ters, such as a zyxin-dependent adhesion field

in a linear elastic model. All three methods

accurately predicted traction stresses and re-

vealed a consistent theme of forces encoded

by adhesion protein information over two

length scales—one associated with the adhe-

sions themselves and another related to cell

morphology.
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heterogeneous biological data. Such methods can be imple-

mented with a readily achievable volume of experimental image

data. This makes them particularly well suited to predict me-

chanical behavior in situations where proteins can be easily

imaged, but physical measurements are difficult.

We introduced three data-driven approaches for biophysical

modeling, which incorporate machine learning at various points

in the model building process to reveal new insights (Figure 7).

While deep neural networks are not directly interpretable, we
10 Cell 187, 1–14, January 18, 2024
demonstrated the utility of synthetic

data for identifying relevant components

in processes with many interacting pro-

teins. Next, we introduced a novel

PBNN to test and enhance existing

models, which revealed the protein-

dependence of effective physical param-

eters. Finally, our GFNN approach traded

some of the complexity of deep U-Nets

for interpretable operations, uncovering

long-range interactions and even an

analytical formula that describes the sys-

tem behavior. These methods represent

an alternative approach to hypothesis

testing and formulation in the framework

of data-driven biophysical modeling

All three approaches, despite being

subject to dramatically different con-

straints and assumptions, revealed two

important length scales. One length scale

of a few microns is consistent with the

size of individual FAs and describes the

relationship between force magnitude

and local zyxin intensity (Figures 4J, 4K,

5G–5J, and 6C–6E, top). Predicting force
directions, however, requires information encoded over a larger

length scale. In the GFNN and U-Net, this scale of tens of mi-

crons is associated with aspects of cell morphology, while in

the PBNN, it is accounted for in the PDE’s boundary conditions

(Figures 4C, 4E, 5A, 5B, and 6C–6E, bottom). Moreover, in the

PBNN and GFNN, the fields corresponding to long length scales

(c; u!) and short length scales (x; Y ) are coupled in a strikingly

similar way (F
!

= Y u! and F
!

= xV
!
c). Neural networks are a

complex black box and care must be taken when analyzing their
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behavior. By using multiple methods that produce consistent re-

sults, we become more confident that the rule learned through

our data-driven framework is generalizable and independent of

the method we use to derive it.

From these rules we can also hypothesize why single FA pro-

teins are sufficient to make accurate predictions. The shorter

length scale identified by these models seems directly encoded

by the FA itself, while the longer length scale relating to cell ge-

ometry can be inferred by integrating over many FAs. Additional

information could potentially be gleaned from the geometry and

orientation of the FAs, which are determined by the stress fibers

to which they are coupled. This information is present in the dis-

tribution of multiple FA proteins, which might explain a certain

degree of interchangeability between zyxin and paxillin as re-

vealed in our analysis of MDCK cells. As to why zyxin appears

to slightly outperform paxillin, we speculate this could be related

to its force-sensitive recruitment to actin and FAs,21,55 but further

research will be required.

Finally, the approaches presented here are applicable beyond

simple models of cellular contractility. Interpretable machine

learning methods can lead to an improved understanding of

the rules and equations governing spatiotemporal behavior in

diverse biological systems.56–59 They may be used to test and

enhance existing models, as well as learn entirely new ones, in

areas where first-principles approaches to biophysics fail. We

only consider prediction of forces from proteins, but an autono-

mous dynamic model will need to be closed by a relation that

predicts how protein distributions evolve in time. Our work sug-

gests that it may suffice to consider only the dynamics of an

effective adhesion field, rather than accounting for the precise

details of cytoskeletal rearrangement. The methods introduced

here could aid in developing mechano-chemical descriptions

of diverse systems such as migrating cells,60–64 epithelial tissue

dynamics,65–67 and morphogenesis.68–71 They could also be

coupled to recent large quantitative datasets describing organ-

elle positioning and interactions72 to glean additional insights.

These approaches represent a step forward toward harnessing

the versatility of machine learning to tackle the complexity of

living systems.

Limitations of the study
Our data-driven biophysical modeling pipeline inherently relies

on the data itself. Despite the demonstrated ability of our net-

works to generalize to unseen data, their predictions depend

on the data in subtle ways. Variations in data quality caused

by different microscopes, the choice of imaging fluorophore,

substrate stiffness, or even how individual cells express pro-

teins can affect the accuracy of U-Net predictions (Figures 3

and S5-S7). We can account for some of these effects via

normalization, but to further improve this generalizability, it

may be useful to assemble a wide-ranging dataset using an

ensemble of experimental conditions. In particular, generalizing

to substrates of different stiffness is complicated by the role of

the TFM regularization parameter (Figures S8 and S9), which

suggests that elastic substrates cannot be discarded. Beyond

data quality, our analysis is limited by the use of 2D image

data. Cells are not 2D objects, and so we would not expect

our method to generalize to structured 3D environments where
out-of-plane mechanical interactions become important. In this

paper, we also restricted our analysis to time-independent

models. However, we observe that cells move significantly

throughout each movie. Future work may find that additional

biochemical information is needed to capture the cells’ full dy-

namic behavior.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND STUDY PARTICIPANT

DETAILS

B Mammalian expression vectors

B Cell culture and transfection

B Live cell imaging

B Traction force microscopy experiments

B Gel stiffness measurements

d METHOD DETAILS

B Data processing

B Training data

B U-Net architecture

B Synthetic cells

B Effective elastic model

B Physical bottleneck

B Green’s function neural networks

B Sparse regression

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Outlier determination

B Optimal predictors and histogram plots

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.cell.

2023.11.041.

ACKNOWLEDGMENTS

The authors thank M. Fruchart, C. Scheibner, E. Efrati, and M. Han for help-

ful discussions and suggestions. M.S.S. was supported by the National Sci-

ence Foundation under grant no. 2022023 and DMR-2011864. J.C. ac-

knowledges support from the National Science Foundation under grant

DMR-2118415. S. Seetharaman is supported by the Eric and Wendy

Schmidt AI in Science Postdoctoral Fellowship, a Schmidt Futures Program,

and by the American Heart Association (AHA; Grant no. 915248). M.L.G. and

V.V. acknowledge partial support from the UChicago Materials Research

Science and Engineering Center (NSF DMR-2011864). M.L.G. acknowl-

edges support from the National Institutes of Health (NIH) through awards

R01-GM143792 and R01-GM104032. P.W.O. acknowledges support in

part by a National Science Foundation CAREER Award #2000554 and Na-

tional Institutes of Health (NIH) National Institute of Allergy and Infectious

Disease(NIAID) award P01-AI102851 and National Institute of General Med-

ical Sciences (NIGMS) award R01-GM148644.V.V. acknowledges support

from the Army Research Office under grant W911NF-22-2-0109 and

W911NF-23-1-0212 and the Theory in Biology program of the Chan
Cell 187, 1–14, January 18, 2024 11

https://doi.org/10.1016/j.cell.2023.11.041
https://doi.org/10.1016/j.cell.2023.11.041


ll

Please cite this article in press as: Schmitt et al., Machine learning interpretable models of cell mechanics from protein images, Cell (2024),
https://doi.org/10.1016/j.cell.2023.11.041

Theory
Zuckerberg Initiative. This research was supported from the National Sci-

ence Foundation through the Center for Living Systems (grant no.

2317138). This work was completed in part with resources provided by

the University of Chicago’s Research Computing Center.

AUTHOR CONTRIBUTIONS

P.W.O., M.L.G., and V.V. conceived and supervised the project. S. Sala,

J.D., S. Seetharaman, and P.W.O. designed and performed cell-imaging

experiments. S. Sala, A.C., and P.W.O. designed and performed substrate

stiffness measurement experiments. S. Sala and P.W.O. processed the

data with code written by P.W.O. M.S.S. and J.C. developed the neural net-

works and analyzed results. M.L.G., P.W.O., and V.V. secured funding.

M.S.S., J.C., M.L.G., P.W.O., and V.V. wrote the manuscript with input

from all authors.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: March 21, 2023

Revised: September 20, 2023

Accepted: November 29, 2023

Published: January 8, 2024

REFERENCES

1. Pegoraro, A.F., Janmey, P., andWeitz, D.A. (2017). Mechanical properties

of the cytoskeleton and cells. Cold Spring Harb. Perspect. Biol. 9,

a022038.

2. Blanchoin, L., Boujemaa-Paterski, R., Sykes, C., and Plastino, J. (2014).

Actin dynamics, architecture, and mechanics in cell motility. Physiol.

Rev. 94, 235–263.

3. Fletcher, D.A., and Mullins, R.D. (2010). Cell mechanics and the cytoskel-

eton. Nature 463, 485–492.

4. Svitkina, T. (2018). The actin cytoskeleton and actin-Based motility. Cold

Spring Harb. Perspect. Biol. 10, a018267.

5. Phillips, R.B., Kondev, J., and Theriot, J. (2009). Physical Biology of the

Cell (Garland Science).

6. Van Saarloos, W., Vitelli, V., and Zeravcic, Z. (2023). Soft Matter: Con-

cepts, Phenomena and Applications (Princeton University Press).

7. MacKintosh, F.C., and Schmidt, C.F. (2010). Active cellular materials.

Curr. Opin. Cell Biol. 22, 29–35.

8. Battle, C., Broedersz, C.P., Fakhri, N., Geyer, V.F., Howard, J., Schmidt,

C.F., and MacKintosh, F.C. (2016). Broken detailed balance at meso-

scopic scales in active biological systems. Science 352, 604–607.
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Original code This paper https://doi.org/10.5281/zenodo.10438518
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Plasmid: mito-mGarnet Addgene RRID:Addgene_104309
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Python version 3.7.10 Van Rossum and Drake76 python.org
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Matlab The MathWorks Inc.79 mathworks.com/products/matlab.html
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact: Vin-

cenzo Vitelli (vitelli@uchicago.edu).
Materials availability
This study did not generate new unique reagents.
Data and code availability
d All TFM data, both raw (.tif) and processed (.npy) files, used to train the models in this work have been deposited at https://

uchicago.box.com/s/663yzjrxh41antctsyu2i872artqrmtd and are publicly available as of the date of publication. DOIs are listed

in the key resources table.

d Code to perform TFM calculations can be found at https://github.com/OakesLab/TFM

d A maintained and up-to-date version of the code for the U-Net models, as well as a walk-through of the code is available at

github.com/schmittms/cell_force_prediction/. Maintained code for the physical bottleneck can be found at github.com/

schmittms/physical_bottleneck/. Maintained code for the Green’s function neural networks can be found at github.com/

jcolen/cell_force_gfnn/. Code on Github is not associated with a permanent identifier and may change in the future. Original

code has therefore also been deposited at Zenodo with permanent identifier https://doi.org/10.5281/zenodo.10438518.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Mammalian expression vectors
mApple-actin (Addgene plasmid #54862), mApple-paxillin (Addgene plasmid #54935), mApple-myosin light chain (Addgene plasmid

#54920) and mito-mGarnet (Addgene plasmid #104309) vectors were a kind gift from Michael Davidson. EGFP-Paxillin (Addgene

plasmid #15233) was a kind gift from Rick Horwitz. For expression as mApple-fusion protein, cDNA encoding zyxin was amplified

(Forward primer: 5’- CCGCTCGAGCTATGGCGGCCC -3’, Reverse primer: 5’- CGGGATCCCTACGTCTGGGCTCT -3’) from the

eGFP-zyxin vector (kind gift from the Waterman lab) and cloned into the mApple-C1 vector (Addgene plasmid #54631) using the

XhoI and BamHI restriction sites.

Cell culture and transfection
Mouse embryonic fibroblasts (MEFs) stably expressing EGFP-zyxin73,81 were a kind gift of Mary Beckerle’s laboratory (University of

Utah, Salt Lake City, UT). Human Osteosarcoma (U2OS) cells were purchased from ATCC (Manassas, VA). MEFs and U2OS cells

were cultured in DMEM (MT10013CV, Corning) supplemented with 10% fetal bovine serum (MT35-010-CV, Corning) and 1%

antibiotic–antimycotic solution (MT30004CI, Corning) at 37�C and 5% CO2. MDCK cells were cultured in DMEM supplemented
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with 2mML-glutamine and 10% fetal bovine serum, also at 37�Cand 5%CO2. At 24 h before each experiment, cells were transfected

with 5 g total DNA using a Neon electroporation system (ThermoFisher Scientific) and plated on polyacrylamide gels for traction force

microscopy analysis.

Live cell imaging
MEFs and U2OS were imaged in Leibovitz’s L-15 medium without phenol red (21083-027, Gibco), 10% fetal bovine serum (MT35-

010-CV, Corning), and 1% antibiotic, antimycotic solution (MT30004CI, Corning) at 37�C on a Marianas Imaging System (Intelligent

Imaging Innovations) consisting of an Axio Observer 7 inverted microscope (Zeiss) attached to a W1 Confocal Spinning Disk (Yoko-

gawa) with Mesa field flattening (Intelligent Imaging Innovations), a motorized X,Y stage (ASI), and a Prime 95B sCMOS (Photomet-

rics) camera. Illumination was provided by a TTL triggered multifiber laser launch (Intelligent Imaging Innovations) consisting of 405,

488, 561, and 637 nm lasers, using a 63X, 1.4 NA Plan-Apochromat objective (Zeiss). Temperature and humidity were maintained

using a Bold Line full enclosure incubator (Oko Labs). Themicroscope was controlled using Slidebook 6 Software (Intelligent Imaging

Innovations). All imaging was performed as single confocal slices. FA proteins and the gel were imaged at the same focal plane. Actin,

myosin, and mitochondria were imaged at a slightly higher focal plane to achieve optimal focus of the structures being imaged. Cells

were imaged for 2 h at 1min intervals, with typically 5-6 cells being imaged per experiment. When used, a 2X concentration of 5 mMof

the ROCK inhibitor Y27632 (10005583, Cayman Chemical Company) in imaging media was added after 30 min. After another 45 min

(i.e. 75 min in total), the drug containing media was replaced with fresh imaging media.
Summary table of the datasets considered in this work. We label each dataset by the day on which it was taken. In the case of MDCK,

‘‘number of cells’’ indicates the number of cell clusters. Cells were imaged at a frequency of 1 min -1, so the time duration in minutes

corresponds to the number of frames in each time series.

Day Cell type Proteins Number of cells Time duration (min) Notes

1 MEF zyxin 4 180

2 MEF zyxin 4 240

3 MEF zyxin, actin 4 120 Y-27632 from T = 30–75

4 MEF zyxin, actin 5 120 Y-27632 from T = 30–75

5 MEF zyxin, paxillin 4 120 Y-27632 from T = 30–75

6 MEF zyxin, myosin 10 120 Y-27632 from T = 30–75

7 MEF zyxin, paxillin 7 120 Y-27632 from T = 30–75

8 MEF zyxin, mitoch. 7 120 Y-27632 from T = 30–75

9 MEF actin, paxillin 10 120 Y-27632 from T = 30–75

10 U2OS zyxin 5 120 Y-27632 from T = 30–75

11 U2OS zyxin 12 120 Y-27632 from T = 30–75

12 MDCK paxillin 17 (clusters) 42
EGFP-Paxillin-expressingMDCK (G Type II cells74) were imaged using a Nikon Ti-E Spinning Disk Confocal microscope with a 40x,

1.15 NA WI objective. Images were acquired at 5-min intervals for 4 h using 488 and 642 lasers, and standard filter sets (Em 525/50,

Em 700/75) (Chroma Technology, Bellows Falls, VT). Samples were mounted on the microscope in a humidified stage top incubator

maintained at 37C and 5% CO2. Images were acquired using the Andor Zyla 4.2 CMOS camera (Andor Technology, Belfast, UK).

Traction force microscopy experiments
Traction forcemicroscopywas performed as described previously.22,82 Coverslips were prepared by incubatingwith a 2%solution of

(3-aminopropyl)trimethyoxysilane (313255000, Acros Organics) diluted in isopropanol. Coverslips were washedwith DI water 5 times

for 10min and cured overnight at 37�C. Coverslips were incubated with 1%glutaraldehyde (16360, ElectronMicroscopy Sciences) in

ddH20 for 30 min at room temperature and washed 3 times for 10 min in distilled water, air dried and stored at room temperature.

Polyacrylamide gels (shear modulus for MEFs and U2OS cells: 16 kPa—final concentrations of 12% acrylamide (1610140, Bio-Rad)

and 0.15% bis-acrylamide (1610142, Bio-Rad), and 10 kPa-final concentrations of 7.5% acrylamide and 0.2% bis-acrylamide; shear

modulus for MDCK cells: 2.8 kPa-final concentrations of 7.5% acrylamide and 0.1% bis-acrylamide) were embedded with 0.04-mm

fluorescent microspheres (F8789, Invitrogen) and polymerized on activated glass coverslips for 30 min - 1 h at room temperature.

After polymerization, gels were rehydrated for 45 min, treated with cross-linker Sulfo-Sanpah (22589, Pierce Scientific) and photo-

activated for 5 min. Polyacrylamide gels were then washed 3 times with PBS and coupled to matrix proteins, rat tail collagen I (for

MDCK cells, overnight at 4�C; Corning) or human plasma fibronectin (for MEFs and U2OS cells, 1 h at room temperature; FC010,
Cell 187, 1–14.e1–e10, January 18, 2024 e3



ll

Please cite this article in press as: Schmitt et al., Machine learning interpretable models of cell mechanics from protein images, Cell (2024),
https://doi.org/10.1016/j.cell.2023.11.041

Theory
Millipore). Following matrix protein cross-linking, cells were plated on the gels and allowed to adhere overnight. Cells were imaged

the following day. Immediately after imaging, cells were removed from the gel using 0.05% SDS and a reference image of the fluo-

rescent beads in the unstrained gel was taken.

Analysis of traction forces was performed using code written in Python according to previously described approaches.22,29,82

Code is available at https://github.com/OakesLab/TFM. Prior to processing, imageswere flat-field corrected and aligned to the refer-

ence bead image with the cell detached. Other acquired channels were shifted using the same alignment measurements from the

bead channel. Displacements in the beadswere calculated using an optical flow algorithm inOpenCV (Open SourceComputer Vision

Library, https://github/itseez/opencv) with a window size of 8 pixels. Traction stresses were calculated using the Fourier Transform

Traction Cytometry (FTTC) approach22,23,80 as previously described, with a regularization parameter of 4.1310� 4 for the 16 kPa data

set, 2.1310� 3 for the 10 kPa data set, and 1.7310� 3 for the 2.8 kPa data set.

Gel stiffness measurements
Gels were fabricated as described above, with the only difference that a spacer was used during polymerization to create a thicker gel

ofz 300-350 m in height. Gel stiffness wasmeasured be measuring the deformation caused by a stainless steel ball bearing 3.5mm

in diameter, as previously described.83 Briefly, the gel height was measured by taking the difference between the bottom and top of

the gel. A confocal z-stack with a step size of 1.25 mmwas then taken through the top of the gel, and the deformation was determined

by finding the center of the indentation and fitting a circle with radius equivalent to the bearing. This depth measurement was

repeated in two orthogonal directions and averaged. The gel Young’s modulus was then determined using a modified Hertz

model83,84 to account for the gel being thin gels bonded to a surface. At least twomeasurements were taken per gel, and experiments

were repeated in triplicate. Gel stiffness value represent the shear modulus.

METHOD DETAILS

Data processing
Fluorescent images are normalized to have similar values across all cells, for all different proteins considered. For each cell, we calcu-

late themean value of the fluorescent signal fwithin the cell mask, mcell
in = CCfðx; tÞDx˛maskDt, and the average value of the signal outside

the mask mcell
out = CCfðx; tÞDx;maskDt. The signal is then normalized as fnormðx; tÞ = ðfðx; tÞ � mcell

outÞ=ðmcell
in � mcell

outÞ and any negative values

(corresponding to values below the noise value of empty space) are set to 0. This ensures that fnorm has amean value of approximately

1. Cell masks are binary and are generated by thresholding the zyxin channel in each image and filling any holes which appear.

Due to variations in substrate preparation, forces measured by cell depend slightly on the experimental round they belonged to. In

our case this corresponds to the day onwhich they weremeasured (cf. Figure 1).We therefore normalize the forces of each cell by the

average within their dataset, mday
F = CCjFðx; tÞjDx;tDcell˛day, so that F

!cell

norm = F
!cell=mday

F for each cell in day. Normalized fluorescent sig-

nals and forces are used everywhere in this work.

Training data
The training and testing data used for all networks in this work is shown below.
Overview table of the training and testing data used in this work. ‘‘D’’ stands for ‘‘day’’, corresponding to datasets in the previous table.

For the protein experiments (U-Net 2), separate networks were, for each protein input, trained on all but one cell that was reserved for

testing. For example, the dataset in row 5 (‘‘D3-4’’) contains 8 cells. We therefore train 8 identical U-Nets on the zyxin channel from

7 cells, withholding a different cell for testing each time.

Network Figures Trained on Evaluated on

U-Net 1 1, 4 (16 cells) D1-6, zyxin D1: {2}, D2: {1, 2}, D3:{2,3,5}

(first 30 frames of each cell) D4: {4,5}, D5: {2,4}, D6: {1, 3,4,5,6}

3A–3C see above U2OS

3D–3F see above MDCK

3G and 3H see above D4: {4}

U-Net 2 2 (8 cells) D3-4, zyxin OR mask OR actin OR zyxin and actin (1 cell; each cell chosen once)

U-Net 2 2 (10 cells) D5, 7, zyxin OR mask OR paxillin OR zyxin and paxillin (1 cell; each cell chosen once)

U-Net 2 2 (9 cells) D6, zyxin OR mask OR myosin OR zyxin and myosin (1 cell; each cell chosen once)

U-Net 2 2 (6 cells) D8, zyxin OR mitoch. OR myosin OR zyxin and mitoch. (1 cell; each cell chosen once)

U-Net 2 2 (10 cells) D9, paxillin OR actin OR paxillin and actin (1 cell; each cell chosen once)

PBNN 5 D1: {3,5}, D2: {2,4}, D3: {1,3}, D4: {1,2,4}, D6: {1}, zyxin D1: {2,4}, D2: {3,5}, D3: {2,5},

D4: {3,5}, D6: {2,3,4,5},

GFNN 6 D1 {1, 2} D2 {3} D3 {1}
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The dataset used to train the U-Net of Figures 1, 3, and 4 consists of 31 cells from days 1-6. Of these, 8 were not subjected to any

perturbation (Days 1 and 2). For training we randomly select 16 cells from the full set of 31. To ensure that only images of cells in their

basal contractile are present, we include only the first 30minutes of each time series. Even for cells not subject to the perturbation, we

only take the first 30 minutes to ensure that each cell is represented equally in the dataset. In total, this amounts to 480 training

frames. For evaluation, full time series are used. The test statistics shown in Figures 1, 3, and 4 are computed from the cells shown

in the table above.

For the U-Nets trained on individual proteins shown in Figure 2 we use 5 datasets. The first is composed of cells from Days 3 and 4,

where actin and zyxin were measured simultaneously; the second from Days 5 and 7, with zyxin and paxillin measured; the third from

Day 6 with zyxin andmyosin measured; the fourth from Day 8 with zyxin andmitochondria measured; the fifth from Day 9 with paxillin

and actin measured. For each combination of protein inputs, we train a network on data from all but one cell. We repeat this, with

separate networks, using each cell in the dataset as the hold-out cell one time. The training data consists of full time series (which

includes Y-27632 perturbations, if present). We cap the total size of the training dataset to 600 frames, which is roughly the size of the

smallest dataset (Day 6, zyxin + mitochondria), for a fair comparison.

U-Net architecture
Neural networks are implemented in Python using the Pytorch library. Code for network implementation, training, and evaluation is

available online at github.com/schmittms/cell_force_prediction.

Predicting force distributions from protein fluorescent images is an image analysis problem andmany neural network variants have

been proposed for such tasks. In the supplemental information, we provide a primer on common network types and relevant con-

siderations for choosing among them.Weopted for a convolutional neural network (CNN) due to their straightforward implementation

and training procedure. A CNN also exploits the spatial structure of the data to limit the number of trainable parameters. While atten-

tion-based networks such as vision transformers have also proven successful at image analysis tasks,85,86 they come with higher

computational and training costs and require very large datasets. To achieve competitive performance with visual attention networks

while maintaining efficiency, we instead adapted our CNNs with ConvNext design.39 We found success with a U-Net architecture

which combines aggressive coarse-graining with skip connections that preserve fine-grained features and crucially can learn to

generalize well from limited data.36
Channel structure for the U-Net used in Figures 1, 3, and 4. We set C=4, while L varies depending on input image size. Strided

convolutions in the encoder layers have a stride of 4. TheU-Nets in Figure 2 are the same, but do not have encoder block 2, skip block 3,

or decoder block 2. They also have only 3 ConvNext blocks everywhere instead of 4.

Layer Size in Size out Details

Prepended block 13 L3 L C3 L3 L Conv2d, 43 ConvNext blocks

Skip block 0 C3 L3 L C3 L3 L 43 ConvNext blocks

Encoder block 0 C3 L3 L
2C3

L

4
3

L

4

43 ConvNext, BN, Strided Conv2d, GELU

Skip block 1
2C3

L

4
3

L

4
2C3

L

4
3

L

4

(cf. skip 0)

Encoder block 1
2C3

L

4
3

L

4
4C3

L

16
3

L

16

(cf. encoder 0)

Skip block 2
4C3

L

16
3

L

16
4C3

L

16
3

L

16

(cf. skip 0)

Encoder block 2
4C3

L

16
3

L

16
8C3

L

64
3

L

64

(cf. encoder 0)

Skip block 3
8C3

L

64
3

L

64
8C3

L

64
3

L

64

(cf. skip 0)

Decoder block 2
2C3

L

64
3

L

64
C3

L

16
3

L

16

Upsample, Concat, 43 ConvNext, Conv2d

Decoder block 1
6C3

L

16
3

L

16
2C3

L

4
3

L

4

(cf. decoder 2)

Decoder block 0
3C3

L

4
3

L

4

C3 L3 L (cf. decoder 2)

Appended block C3 L3 L 23 L3 L 43 ConvNext blocks, Conv2d
The channel structure of the U-Net is shown above. Most layers are composed of blocks with a ConvNext structure.39 Briefly, they

consist of a layer-wise convolution, batch normalization, an inverse-bottleneck depth-wise convolution, activation function, and

finally a depth-wise convolution. Our ConvNext blocks have a layer-wise kernel size of 7 and increase channels in the inverse
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bottleneck by a factor of 4. For all other convolutions, we use a kernel size of 3. Dropout is used with a dropout probability of 10%. A

detailed illustration of the architecture is shown in Figure S2. The number of encoding (coarse-graining) layers was set by the minimal

image size we processed in the paper. With a minimal image size of 643 64 and 43 4 downsampling convolutions, this restricted us

to 3 encoding layers. The hyperparameters of theConvNext blocks, including kernel size, inverse bottleneckwidth, and normalization

layers, are chosen according to the optimal values found in.39

The U-Net is trainedwith the Adam optimizer with weight decay (‘‘AdamW’’,87) with an initial learning rate of 0.001. The learning rate

is scheduled to decay exponentially with rate 0.99. We use a batch size of 8.

For the U-Net used in Figures 1, 3, and 4, training data consists of 480 randomly sampled frames from time-lapse series of 16 cells

(of 31 cells total). For the U-Nets used in Figure 2, training data consists of 600 randomly sampled frames with a variable number of

cells for training (see ‘‘overview table of the training and testing data used in this work’’). Each data sample contains an input image

(either zyxin, another protein, the mask, or a two-channel zyxin + protein image) paired with the corresponding traction force map

measured via TFM. Traction force maps have two channels, which we represent as magnitudes and angles rather than x and y com-

ponents. In all cases, the network is trained for 300 epochs (passes through the entire training data set). As a loss function, we take the

MSE for the magnitude component, and a 2p-periodic MSE for the angles.

Synthetic cells
We consider three variants of synthetic cell for the experiments shown in Figure 4. The first variant captures large-scale features of

cell geometry. We generate cells of triangles whose sides are given by circular arcs. The cell shape is parameterized by L, the dis-

tance between the corners of the triangle, and Rc, the radius of curvature of the circular arcs. Forces measured in Figures 4G– 4I

correspond to the average force across the area of the cell. These synthetic cells were fed as input to a U-Net trained on cell

geometry.

The second class of synthetic cells models the distribution of focal adhesion-like objects in the cell. The intensity structure of these

adhesions was chosen to match those of experimental adhesions, see Figure S10 for details. In each cell, ellipses of a given aspect

ratio and areawere randomly distributed (uniformlywith a density of 60%) in a circle of fixed radius of 200 pixels (z34mm). Each cell is

parameterized by the corresponding area and aspect ratio of the ellipses. Each ellipse had an intensity of 1, and they were allowed to

overlap. Hence, the input image contained a range of (integer) intensities. Ellipse aspect ratio was defined relative to the radial direc-

tion, so probing aspect ratio in effect probed focal adhesion orientation. We evaluate the predicted force by calculating the average

force on regions where a focal adhesion is present.

The role of zyxin intensity was probed by creating cells consisting of equidistant elliptical adhesions on a circular cell ‘‘back-

ground’’. These synthetic cells are parameterized by the intensity of the background B, the radius of the cell R, the angular density

of focal adhesions D (D = 1 corresponds to no angular space between neighboring adhesions), and the length L and intensity I of

focal adhesion ellipses. The intensity of the background models zyxin intensity in the cell away from focal adhesions. The zyxin in-

tensity at focal adhesions typically has values in the range 4-12 (a.u.), while the background has values in the range 0-1. In Figure 4K,

we show the change in intensity for B = 0:8 and D = 0:5; results do not strongly depend on B and D. To model the intensity profile of

FAs seen in experiment, at the edges of the FA ellipses intensity increases linearly over 2 pixels until the specified FA intensity is

reached. We evaluate the predicted force by calculating the average force on regions where a focal adhesion is present.

In the supplemental information, we show an additional variant of ‘‘synthetic cell’’ used to probe length-scale dependence of the

neural network. These fake cells were generated by binarizing the zyxin images via thresholding, and applying dilations to achieve

binary regions of different sizes. While this procedure does not afford fine control over the size of the resulting regions, it preserves

some aspect of the distribution of FAs in the cell and results in sufficient regions that trends can be extracted. The results suggest that

information is integrated over a length scale of � 5m m, consistent with our other findings in this work. See Figure S11 for details.

Note all values of zyxin here and in the rest of the paper are given in units after normalization described in ‘‘Data processing’’ above.

Effective elastic model
We consider a model of the cell as an effective two-dimensional linear elastic medium. While originally introduced to model cells on

micropillar arrays,33 it has been extended to describe cells uniformly adhered to 2D substrates.32 The free energy of the cell is

U =
h

2

Z
dA

�
sel
ij + sadij

�
uij +

1

2

Z
dA YðxÞuiui (1)

where uij =
1
2 ðviuj + vjuiÞ and selij is the elastic stress tensor. h is the height of the cell, which is assumed to be small. As described in

the main text, YðxÞ models a adhesion or pinning force which penalizes deformations, while sa serves as an active pressure term.

Minimization of the elastic free energy leads to force balance equations for u!ðxÞ:
hvjs

el
ij = YðxÞui ðin bulkÞ (2)
sel
ij nj = � sani ðon boundaryÞ: (3)
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In addition to these conditions, we also require that sel and u! are related via the constitutive relation

sij =
E

1+n

� n

1 � 2n
dijukk + uij

�
; (4)

where E and n are the effective Young’smodulus and Poisson ratio, respectively, of the cell. Combining the force balance equations

with the constitutive relation gives a PDE which determines u!.

Physical bottleneck
The physical bottleneck consists of a neural network step joined with a PDE-solver step. The neural network is implemented in the

PyTorch library, and the PDE-solver is implemented with the dolfin-adjoint library.88 At each step during training, we first predict a

field YðxÞ and scalars sa and n (the Poisson ratio, which we find to be nearly constant nz � 1) using a neural network with zyxin

as input. The convolutional neural network used to calculate Y is a shallowU-Net with structure shown in the table below. The network

used to calculate the scalars consists of one convolutional layer which aggressively coarse-grains the image by a factor of 16, fol-

lowed by fully-connected layers.
Channel structure for the physical bottleneck neural network. The top section describes the network used to predict the field YðxÞ.
Here, C = 32, all Conv2d layers have a kernel size of 5, and ConvNext blocks have kernel size of 15 and inverse bottleneck factor of 4.

GELU is used as the activation function throughout. The bottom section describes the fully connected network used to predict the

constants sa and n. We use N = 32. In this network, every layer is followed by a ReLU activation.

Layer Size in Size out Details

Prepended block 13 L3 L C3 L3 L Conv2d

Skip block C3 L3 L C3 L3 L 10 ConvNext blocks

Encoder block C3 L3 L
2C3

L

4
3

L

4

BN, Strided Conv2d, ReLU

Skip block 1
2C3

L

4
3

L

4
2C3

L

4
3

L

4

10 ConvNext blocks

Decoder block
3C3

L

4
3

L

4

13 L3 L Upsample, Concat, Conv2d

Strided Conv2d 13 L3 L
163

L

16
3

L

16

Followed by flattening

FC $L2=16 N

FC N N Layer repeated 10 times

FC N 2
The parameters output by the neural networks are mapped to a mesh (for spatially-varying parameters) after which they are fed as

inputs to a PDE solver. To solve both forward PDE problems and derive adjoints (described in the following), we use the dolfin-adjoint

library.88 The PDE solver calculates a displacement field u!ðxÞ satisfying the PDE imposed by the physical model. Forces are calcu-

lated as YðxÞ u!ðxÞ and compared to the experimentally measured values to give the loss L, which is simply the mean-squared error.

Gradients vL=vYðxÞ etc. are computed using the adjoint method.

We briefly introduce the adjoint method,54 a widely-used technique to optimize PDE parameters in control or data-assimilation

tasks. We consider a PDE which acts on a field uðxÞ and has parameters pðxÞ. One wants to optimize a function of the PDE’s solution

JðuÞ. This can be cast as a constrained optimization problem where one wants to minimize the Lagrangian

Lðu; v;pÞ = JðuÞ+ Cv;DuD:

HereD denotes the PDE wewish to optimize (which depends on pðxÞ) and vðxÞ, introduced as a Lagrange multiplier to enforce that

u satisfiesDu = 0, is called the adjoint state. The angled brackets denote an inner product on the function space inwhich u and v live.

Gradients of the Lagrangian vL=vp are given in terms of v, which is itself found by solving the adjoint PDE D�p = fðuÞ. The adjoint

PDE is determined from the Euler-Lagrange equation vL=vu = 0.

In practice, the adjoint equations are solved using automatic differentiation. We use dolfin-adjoint to calculate vL=vYðxÞ, vL= vsa

and vL=vn. These gradients are passed directly to PyTorch’s autograd library to update the neural networks which predict YðxÞ, sa
and n.

Green’s function neural networks
Green’s Function Neural Networks (GFNN) were implemented using the Pytorch Library. To predict traction forces with a GFNN, we

used the Clebsch decomposition F
!

NN = V4+ xVc, which is possible for any vector field. We hypothesized that each Clebsch var-

iable was the solution to a linear partial differential equation (PDE) whose source was a function of the local zyxin density.
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D44 = r4½z�;Dxx = rx½z�;Dcc = rc½z� (5)

To predict traction forces subject to this hypothesis, we trained aGFNN to compute eachClebsch variable. Under ((5)), each term is

the integral of a source and a Green’s function.

4ð x!Þ =

Z
d2 r!G4ð x! � r!Þr4ð r!Þ; xð x!Þ =

Z
d2 r!Gxð x! � r!ÞrxðrÞ;cð x!Þ =

Z
d2 r!Gcð x! � r!ÞrcðrÞ (6)

For the network presented in Figure 6, we trained on three cells imaged under normal conditions and evaluated on an unseen

cell to which the ROCK inhibition had been applied. The inputs were the zyxin density and the target outputs were traction force

predictions from U-Net discussed in Figures 1, 2, 3, and 4. We center-cropped each input-output pair to a box of size 10243

1024 pixels, downscaled by a factor of 4, and applied a Fourier cutoff with kmax = 50. The GFNN used the zyxin field as input

and learned to predict forces through the Clebsch decomposition and its corresponding Green’s functions. It predicted the sour-

ces ra using a shallow convolutional neural network and represented the Fourier-transformed Green’s function as a three-channel

2563256 complex float tensor (N = 256 matches the downscaled images size in pixels). The complete network structure is shown

in the table below.
GFNN architecture for cell force prediction. The network includes convolutional blocks inspired by the ConvNext architecture.

Grouped convolutions accumulate local information within each channel, while 131 convolutions with the inverse-bottleneck

structure enable the network to learn complex local functions at each pixel while maintaining a minimal receptive field.

Module Layer Channels Details

Block 1 Conv2d 1/64 k3 3 3, groups = 64

Conv2d 64/256 k1 3 1

Sine Activation function

Conv2d 256/64 k1 3 1

Block 2 Conv2d 64/64 k3 3 3, groups = 64

Conv2d 64/256 k1 3 1

Sine Activation function

Conv2d 256/64 k1 3 1

Sources Conv2d 64/3 k1 3 1

Integration FFT2 f4;x;cgðqÞ = GiðqÞ$fiðqÞ
Green’s functions

IFFT2

Output Clebsch F = V4+ xVc
We trained the network for 200 epochs with batch size 8, learning rate l = 10� 2 on the Green’s functions and l = 10� 4 on all other

parameters. We used the Adam optimizer89 and scheduled the learning rate to decrease by a factor of 10 whenever the loss function

failed to improve for 10 epochs. The GFNN learned to minimize the following loss function with b = 0:1

L =
X�

F
! � F

!
GFNN

�2

+ b
X

jGað q!Þj2 (7)

After training, we found that the4 field contributedminimally to the predictions. In Figure S3, we demonstrate that theV4 term in the

Clebsch representation accounts for 1:1% of the overall traction force field and is not necessary for the GFNN to generalize to exper-

imental perturbations. Because of this, we omitted it from our analysis in Figure 6.

To demonstrate the performance of GFNN aswell as the Clebsch decomposition approach, in Figure S4we train aGFNN to predict

forces in a 2DCoulomb electrostatic system.When trained on synthetic data, the network learns to perfectly predict forces and learns

Green’s functions which agree well with the ground truth, i.e. the Coulomb force law.

Sparse regression
Weperformed sparse regression90 in Python using the PySINDy library.91,92 Our candidate library was informed by theGreen’s function

neural network results. We assumed that the sources ra were expressible as linear combinations of local zyxin gradients and approx-

imated Ga using a set of radially-decaying functions. We used a set of local scalar derivatives ri ˛ fz;V2z; ðVzÞ2; z2; zV2z; zðVzÞ2g
and chose the following candidate functions for the Green’s functions.

GiðrÞ˛
	
r� 1; logðrÞ; r; e� lx ; e� lc



(8)
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Theory
The last two terms are exponentially decaying functions whose length scales la were fit to themachine-learnedGx;Gc in Figure 6D.

We included the remaining three terms as slowly-decaying functionswhichmight capture the long-range behavior ofGc. From the set

of sources ri and Green’s functions Gi, we constructed a library such that F
!

could be represented as a linear combination of the

following terms.

F
!ð x!Þ =

X
ij

�
w4

ijV

Z
d r!Giðj x! � r!jÞrjð r!Þ

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

V4

+

X
ijkl

�
wxc

ijkl

�Z
d r!Giðj x! � r!jÞrjð r!Þ

�
V

�Z
d r!Gkðj x! � r!jÞrlð r!Þ

��
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

xVc

(9)

The weight grouping for xVc ((9)) is necessary as sparse regression is framed as a linear optimization problem. To obtain the

weights w!, we used an elastic net objective.

w! = argmin

�
C
�
F
! � F

!ðw!Þ
�2

D + akw!k1 +
1

2
akw!k2

�
(10)

Here, a is a parameter which sets the level of solution complexity, which we set to a = 0:75. For training, we used the first 16 mi-

nutes of the cell movie (Day 3 cell 1, see first table), all of which were before the ROCK inhibitor was applies at t = 30 min. We per-

formed sparse regression on 50,000 randomly-selected pixels in the 16 training frames (approximately 8% of the data in the training

frames). This yielded an effective equation with 10 terms (see supplemental information). Figure 6G shows a sample prediction at t =

40 min, 10 minutes after the ROCK inhibitor was applied. Figure 6H summarizes the predictions from this equation over the

entire movie.

A different choice of a yields equations of different complexity. For Figure 6I, we fit formulas using 17 values of a in the range ½10� 4;

101�. We performed this procedure for each cell in the dataset and recorded the number of terms in the resulting formula and the

mean-squared error (MSE) with experiment. As a baseline, we also recorded the MSE of the U-Net with experiment. To quantify

how adding terms to the formula improves predictions, we defined the Relative Error metric in Figure 6I as MSESINDyðaÞ � MSE0,

where MSE0 is the error of a model with zero learnable parameters F
!

= 0, representing the a/N limit. Thus, a model which

uses more learnable parameters to achieve higher accuracy will have a negative relative error. To contextualize the performance

of the sparse regression models, we compared the relative error of the learned equations to that of the U-Net and found that on

average, a 10-term equation achieved 77% of the U-Net relative error.

QUANTIFICATION AND STATISTICAL ANALYSIS

Outlier determination
One cell in the actin dataset was an outlier, and was excluded from the calculation of the mean in Figure 2C. We tested for outliers

using the Iglewicz-Hoaglin outlier test93 and illustrate these results in Figure S7.

Optimal predictors and histogram plots
Probability distributions shown in angle andmagnitude plots (for example, Figures 1E and 1F) are calculated by binning all pixels of all

frames in the test set to calculate the number of joint occurrences of

����F!exp

���� and
����F!NN

����. The histogram is normalized to yield a prob-

ability and divided by the marginal distribution to calculate conditional probabilities. The ‘‘average’’ curves in Figures 1E, 1F, 2B, 2D,

3B, 3C, 3E, 3F, 4B, 4D, 5E, and5F are given by CðFNÞ = EFE
½FE jFN� (or analogously for angles).

In this work, we evaluate predictions by relying on conditional distributions pð��FexpkFNN

��Þ. (In the following we consider only force

magnitudes and write jFj = F, and we abbreviate FNNhFN and FexphFE for brevity). This choice is motivated by the fact that, in the

presence of noise, the conditional averageCðFNÞ = EFE
½FE jFN�will satisfyCðFNÞ = FN for a theoretically optimal predictor andwill thus

lie along the diagonal in the FE � FN plane. On the other hand, CðFEÞ = EFN ½FNjFE � will generally not lie along this diagonal.

To see this, consider our dataset as a set of pairs fXðiÞ;FðiÞg indexed by i where Fi is force magnitude at some pixel, and Xi is the

distribution of zyxin in a neighborhood of that pixel. The neighborhood is set by the receptive field of the neural network. Due to either

biological or experimental noise, there is a joint (non-deterministic) distribution pðX; FEÞ from which our data is drawn. The loss func-

tion for the force predictions FNðXÞ can be written

LðFNÞ = EXEFE

h
ðFN � FEÞ2

���XihEXLXðFNÞ:

The (Bayes) optimal predictor is one which optimizes, for every X,
Cell 187, 1–14.e1–e10, January 18, 2024 e9
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F�
NðXÞ = argmin

FN
LXðFNÞ:

In can be shown that LX is minimized by F�
NðXÞ = EFE

½FE jX�. Note that for this to be valid for all X, our network must be sufficiently

expressive, else our model would be constrained and we would not (necessarily) be able to satisfy this condition for all X indepen-

dently. If we do indeed have sufficient (infinite) expressivity, this is the (Bayes) optimal predictor.

In the supplemental information, we show that with an optimal predictor, the conditional averages satisfy

CðFNÞ = EFE
½FE jFN� = FN and CðFEÞ = EFN

½FNjFE � = EpðF 0
E jFE Þ½F 0

E �. Here pðF 0
E

��FEÞ denotes the posterior predictive distribution

pðF 0
E

��FEÞ =
R
dXpðF 0

E

��XÞpðXjFEÞ. We additionally show that even in the case of Gaussian random variables, themean of the posterior

predictive distribution pðF 0
E

��FEÞ is, for a given FE , smaller than FE . Thus even for an optimal predictor, the line defined by CðFEÞ lies
below the diagonal. For this reason, we evaluate our predictions by considering CðFNÞ and its distance from the diagonal, which is

0 for an optimal predictor.
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Inverse bottleneck factor F = 4
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Figure S1. U-Net architecture, related to Figures 1, 2, 3, and 4

U-Net architecture augmentedwith ConvNext residual blocks. The notation ðC; L; LÞ denotes the size of the image at each stage in the network, withC the number

of channels and L the image size. Images are always square, and wemust start with an image size which is multiple of 64 pixels. As an activation function, we use

GELU (Gaussian error linear unit) throughout.
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Figure S2. Physical Bottleneck Forward and Backward Passes, related to Figure 5

The physical bottleneck differs from other neural network-based parameter estimation techniques by enforcing a hard constraint, which stands in contrast to the

soft constraints used by PINN-based approaches.94 Hard constraints are enforced by training the network using gradients generated by the adjoint method

described in the previous section. These gradients are then fed to PyTorch’s automatic differentiation pipeline to pass them through the neural network.
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Figure S3. Distribution of force magnitudes and angles and MSE variations, related to Figure 1

(A) Histogram of distribution of force magnitudes in the test dataset for Figure 1. Vertical line denotes the 99.9th percentile of force magnitudes.

(B) Histogram of force directions in the test dataset.

(C) Average magnitude prediction (reproduction from Figure 1F in the main text) Vertical and horizontal dotted lines denote the 99.9th percentile of force

magnitudes, as in (A).

(D) (Center) Reproduction of matrix in Figure 1H of themain text. (Right) for each cell in the test dataset, we calculate themean-squared error (MSE) averaged over

all possible cells in the train dataset (black solid line). In other words, we take the horizontal average over the ‘‘x’’ axis of thematrix. The shaded region denotes the

maximum andminimumMSE for each test cell. (Bottom) We calculate the average performance across all test cells, for each cell in the training set, by averaging

over the ‘‘y’’ axis of the matrix (center). Shaded region corresponds to maximum and mininum MSE for that particular training cell.

(E) Same as (D), but instead showing MSE relative to the average. For each entry in the matrix, D MSE ij =
MSEij � CMSED

CMSED where CMSED is the total average MSE.

(F) We compare the average DMSE for each cell when it is in the test set (black) or the training set (blue). (These are the same curves as in (E) right and bottom.)

(G) Scatterplot of the average D MSE for each cell when it is in the test set versus the training set. For each cell, presence in the test or train set may result in a

relative increase or decrease of MSE by roughly ± 4%. Improvement when the cell is in the test versus train set is nearly perfectly anticorrelated, with a correlation

(legend continued on next page)
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constant of -0.9. This indicates that the cells which are hard to predict (high test MSE) lead to better predictive models when they are included in the training set

(lower average MSE when in train).

(H–K) Same matrices as in (D)–(G) but averaged over the experimental day on which the cells were imaged (delimited by dashed lines). D MSE varies by

experimental day up to ± 2% of the total average MSE.

ll
Theory



(kPa)

)aPk(

Zyxin-trained networks

Other protein-trained networks

D
at

as
et

D
at

as
et

Iglewicz-Hoaglin Test

Data (avg. zyx. err.)

Zyx. Magnitude Error Act. Magnitude Error

Zyxin Experiment NN Prediction

O
ut

lie
r 1

kP
a

0

1

A

B

C E F G

D

H

(legend on next page)

ll
Theory



Figure S4. Angle and magnitude errors for networks trained on different proteins, related to Figure 2

(A) and (B) Here we show distributions of forces for all models used to generate Figures 2B–2E. For each cell in a dataset, we train a model on all cells except the

held-out cell. These distributions show the distribution of predictedmagnitudes for themodel evaluated on the held-out cell. (A)Models using zyxin as the input for

the neural network. (B) Models trained using the other protein (actin, mitochondria, myosin, or paxillin) measured in each dataset.

(C) and (D) (C) shows the error in angles and (D) the error in magnitudes for the U-Nets trained on different proteins. Each protein is imaged jointly with zyxin, hence

each protein has a comparable zyxin-trained network (green dots). Training on combinations of proteins (black) does not improve prediction. For each cell in the

corresponding protein’s dataset, we train a network and withhold that cell for testing. Error bars denote standard deviations of these networks on varying the

test cell.

(E) Iglewicz-Hoaglin outlier test93 values for the hold-one-out experiments on the actin dataset in Figures 2D and 2E of the main text.

(F) and (G) Change inmagnitude error by removing one of the two identified outliers. Outlier 1 is responsible for a threefold increase in zyxin magnitude error, while

changing the actin magnitude error only marginally.

(H) Predictions on the outlier 1 cell (‘‘17_cell_1’’ in A and B). The exceptionally large error value is due to high forces predicted at one location where in experiment

there are no forces (white arrow).
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Figure S5. Comparison of zyxin- and paxillin-trained U-Nets, related to Figure 3

Zyxin and paxillin are both LIM-domain proteins which localize to focal adhesions. We find that these proteins are to some degree interchangeable, in the sense

that a network trained on zyxin (paxillin) can still make accurate force predictions when evaluated on paxillin (zyxin). In Figures 2D and 2E of the main text, zyxin

slightly outperforms paxillin in magnitude predictions.

(A) Part of this difference may be attributed to differences between fluorophores. Even when imaging zyxin only, mApple tends to slightly underperform GFP at

high forces.

(B) and (C) In (B) and (C), we evaluate the predictions of zyxin- (left) and paxillin-trained (right) networks whenmade on both zyxin or paxillin images (green and red

lines, respectively).

(D) MDCK colonies were imaged with EGFP paxillin. We predict forces on these colonies with our network trained onmApple-paxillin cells, as well as EGFP-zyxin

cells (bottom row).

(E) and (F) Both networks predict force magnitudes similarly well, but the zyxin-trained network makes more accurate angle predictions (F).
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Figure S6. Error metrics for predictions on new cell types, related to Figure 3

(A) Magnitude errors (defined in Figures 2D and 2E of the main text) for predictions of fibroblast-trained U-Net when evaluated on MDCK cell clusters and U2OS

cells. We show the results of networks trained on different proteins for reference (Figure 2E of the main text).

(B) Angle errors (full width half maxima) for predictions of fibroblast-trained U-Net when evaluated on MDCK cell clusters and U2OS cells.
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Figure S7. U-Net dependence on scale, and further generalizations, related to Figure 3

(A) We evaluated the network on cells imaged with a microscope of 1.83 the resolution on which the network was trained. (Top) As the input image is apparently

larger (in terms of pixels) by a factor 1.8, predictions are less accurate and the network predicts extremely localized features (right). (Bottom) Predictive accuracy

can be recovered by downsampling the image to the training resolution, after which the network predicts the correct large-scale distribution of forces.

(B) We optogenetically stimulate RhoA recruitment to a region of the cell,28 which causes an increase in total force exerted by the cell. Solid curves are smoothed

versions of the corresponding lighter curves.

(C) The optogenetic perturbation causes an accumulation of zyxin and the emergence of traction forces under the stimulated region (white arrow). Surprisingly,

the U-Net accurately predicts these new forces within the cell despite seeing no such phenomena during training.
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Figure S8. Evaluating a trained U-Net on cells adhered to substrates of different stiffness, related to Figure 3

We take a U-Net trainedwith cells adhered to a 16 kPa substrate (the same in Figures 1,3, and 4 in the main text) and evaluate the network’s ability to generalize to

cells adherent to 10 kPa substrate.

(A) Distribution of forces pð��FexpkFNN

��Þ. Predictions are accurate on average (black line) up to 8kPa, albeit with slight underprediction at low forces (the average

curve lies above the diagonal), and slight overprediction at high forces (average is below the diagonal).

(B) Distribution of angles pðaexp

��aNNÞ.
(C) Sample predictions for two different cells. Note that forces are more smeared out in the experimental data, likely due to the higher regularization parameter

used for TFM with soft substrates. (D) The network captures the relative change in forces during ROCK perturbation experiments. The total force is slightly

different, again likely due to the higher regularization parameter in experiment. (E) Force distribution for a network trained on 10 kPa cells, evaluated on 16 kPa.

The average (black line) lay below the diagonal, indicating that the network is overpredicting magnitudes. This effect may be in part due to the effect of different

regularization parameters, see Figure S4.

(F) Distribution of angles pðaexp

��aNNÞ.
(G) Sample predictions for one cell. While the locations of the predicted forces are mostly accurate, the predicted forces are much more spread out than in

experiment. This is likely due to the larger regularization parameter in the data used to train the U-Net and may also be due to the smaller amount of data used to

train the network.

(H) Despite these differences, the network correctly captures the ROCK inhibition experiment. Error bars in (A), (B), (E), and (F) correspond to one standard

deviation in each direction.
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Figure S9. Impact of TFM regularization parameter, related to Figure 3

(A) TFM requires a choice of parameter l that regularizes the inverse elastic Green’s function which is used to compute forces from substrate displacements. The

choice of regularization parameter impacts the forces found by TFM and determining the ‘‘correct’’ parameter is amatter of active research.24 Here we show how

the distribution of forces shifts due to varying regularization parameter l$a. These are probability distributions for the normalized forces, using the normalization

procedure as described in STAR Methods. Low-regularization forces are normalized by a larger amount, hence the entire distribution is scaled and shifted

towards smaller forces: the red curves lie below the black curve. Thus, the effective forces in the low-regularization case are smaller.

(B) We directly compare the force maps generated with two different regularization parameters by generating the same histograms in Figure S4 where the

‘‘predicted’’ forces are those generated at a particular regularization l and the ‘‘experimental’’ forces are generated at a different regularization l$ a. Even a

‘‘perfect’’ predictor appears to make errors by deviating from the diagonal. The behavior here is qualitatively similar to the observed curves in Figure S4. In

particular, when evaluated on forceswith a higher regularization parameter (blue; corresponding to Figure S4), small forces are slightly underpredicted while large

forces are overpredicted. When evaluated on a lower regularization parameter (red; corresponding to Figure S4) forces appear to be overpredicted.
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Figure S10. Synthetic cell construction, related to Figure 4

To create focal adhesions for our synthetic cells (Figure 4 of the main text), we attempt to mimic the structure of experimentally observed FAs.

(A) We select two FAs from a cell. The first is in a region of relatively high ‘‘background’’ zyxin intensity. The average intensity in the green box is 0.8, in contrast to

the average intensity of 0.1 in the green box for FA 2.

(B) and (C) We align each FA with the x axis and examine its profile along the x and y directions shown in shades of red and blue, respectively.

(D) We approximate FAs as ellipses with a linearly decreasing intensity at the edges.
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Figure S11. Additional synthetic cells: binarized cells, related to Figure 4

(A) We test the trained U-Net’s response to more ‘‘natural’’ features by generating synthetic inputs to the neural network from actual cell images. To generate

synthetic cells, we binarize the zyxin signal via thresholding, and then dilate the binary regions. This allows us to change the size of certain cell features, and by

increasing the dilation size, certain features may merge to create yet larger structures. (B) We measure the average force F predicted for each connected binary

region and show the distribution of pðFjAÞwhereA is region’s area (in mm2). The strongest force predictions occurs for structures of area 5 mm, consistent with the

results of Figure 4J. We see that above A � 50mm2, the network no longer predicts large forces. This cut-off agrees with the short length scales learned by the

physical bottleneck (LPBNN), as well as the Green’s function neural network Lx.
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Figure S12. Supplementary analysis of physical bottleneck parameters, related to Figure 5

(A) For each image in the dataset, we calculate the total zyxin above a quantile q of the zyxin distribution, which we call zq. The sum of zyxin above this quantile is

z>q =
P
z> zq

z. A threshold (quantile) of 0.0means we take the entire sum of zyxin in the image (far left), while a threshold (quantile) of 0.97means we take the sum of

the top 3% of zyxin values.

(B) For a given threshold value, we can generate scatter plots of sa or Y with zq for each image. (C) For increasing quantile values, Y becomes increasingly well-

correlated with total zyxin, suggesting that it depends only on the highest values of zyxin. In contrast, sa does not become increasingly correlated, suggesting that

it is not solely a function of high zyxin values.

(D)We correlated normalized versions of average adhesion and total predicted force, ðY � m
Y
Þ=s

Y
where m

Y
; s

Y
corresponds to themean and standard deviation

of Y for all frames across the entire dataset (and analogously for the total force, Ftot).

(E) We find that sa is more closely correlated to Ftot than Y . For clarity of presentation, outliers beyond 2 standard deviations are cropped in both (D) and (E).

(F) Illustration of the evolution of sa and the total predicted force as a function of time for each cell in the test set.
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